Part III Attachment III-E Appendix III-E.5

SUPPLEMENTAL SUBSURFACE INVESTIGATION REPORT PHASE V

Pescadito Environmental Resource Center
MSW No. 2374
Webb County, Texas

Initial Submittal September 2015

Prepared For:

Rancho Viejo Waste Management, LLC 1116 Calle del Norte Laredo, TX 78041

Prepared by:

CB&I Environmental and Infrastructure, Inc.

12005 Ford Rd, Suite 600 Dallas, TX 75234 MICHAEL W. ODEN

67165

SONAL ENGLISH

MULLET WOOL

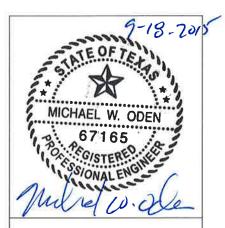

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Table of Contents

1.0	INT	TRODUCTION	., 1
2.0	PR	EVIOUS INVESTIGATIONS – PHASES I-IV	2
2.1	.1	RotoSonic Drilling Limitations	3
2.1	.2	Subsurface Water Information	4
2.1	.3	Hydrogeologic Testing of Phase III Piezometers	5
3.0	PH.	ASE V INVESTIGATION	6
3.1	.1	Field Investigation	6
3.1	.2	Subsurface Water Observations	9
3.1	.3	Piezometer Recovery Testing Results	11
3.1	.4	Geotechnical Test Results	15
4.0	Yeg	gua-Jackson Boundary Definition	17
5.0	Sub	surface Water Quality Information	18
6.0	CO	NCLUSIONS	20
List o	f Pho	<u>otos</u>	
Photo	1 - 7	Fest Pit 1 – January 2012	2
Photo	2 - 7	Гest Pit 1 – January 2015	3
Photo	3 - (Grouting Boring B-52 – January 2015	7
<u>List o</u>	f Tab	<u>bles</u>	
Table	1 - P	Piezometer Construction Summary	8
Table	2 - I	Permeability Results	12
Table	3 – I	Horizontal Permeability Calculations	15
<u>List o</u>	f Fig	<u>ures</u>	
Figur	e 1 –	Phase V Piezometers – Permeability Test Data	13

Attachments

III-E.5-A	Figures
III-E.5-B	Phase V Logs of Borings
III-E.5-C	Photographs
III-E.5 - D	Piezometer Data Sheets
III-E.5-E	TDLR Well Reports
III-E.5-F	Geotechnical Test Data
III-E.5-G	Subsurface Water Analytical Testing Results

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

1.0 INTRODUCTION

The purpose of this report is to provide additional information regarding the subsurface soils and groundwater at the Pescadito Environmental Resource Center (PERC) project in Webb County, Texas. Subsurface investigation and geotechnical testing for the PERC project was originally conducted in four phases. The results of the Phases I-IV subsurface investigation and geotechnical testing are presented in Part III, Attachment III-E, Appendix III-E.2, <u>Subsurface Investigation Report</u> (SIR) and Part III, Attachment III-E, Appendix III-E.3, <u>Geotechnical Data Report</u> (GDR). Both reports were originally dated February 25, 2015 and updated in September 2015. That information was provided to meet the requirements of 30 TAC §330.63(e)(4) and §330.63(e)(5)(A-E) and the requirements of the approved <u>Soil Boring Plan</u>.

Subsequent to Phases I-IV, supplemental field work and additional testing (Phase V) has been conducted to provide additional information useful for general landfill design. This supplemental information is provided to address the following:

- 1. Information limitations imposed by the use of Sonic drilling/sampling methods used predominantly in Phases II and III of the earlier investigations.
- 2. Obtain undisturbed geotechnical test samples to depths of 150 feet to supplement those from the Phase IV test pits.
- Obtain additional information about shallow subsurface water and/or groundwater and hydraulic interconnection and to test techniques for annular seal of piezometers and monitoring wells.
- 4. Reconcile the term "moist" used to describe the Yegua-Jackson (Y-J) soils on the Phase I-III boring logs with the very dry geotechnical test results and subsurface water observations, etc. and specifically the regional geology and soil characteristics.
- 5. Provide additional information regarding the presence/absence of the Y-J contact within the project boundary.
- 6. Obtain additional laboratory and field testing to supplement previous investigative results.

1

2.0 PREVIOUS INVESTIGATIONS – PHASES I-IV

The Y-J encountered at the site is predominantly (>90%) "claystone" with minor amounts of "sandstone" and "siltstone." The encountered Y-J materials appear "rock-like" due to the fact that they have been heavily over-consolidated during their geologic history. In essence they are "compaction" claystones as opposed to cemented claystones. However, when exposed to the elements for a brief period or when processed, these rock-like materials quickly regain their soil identities. This rapid transformation is due to the fact that the "claystones" have a blocky, intensely-fissured structure (see Photo 1 - Test Pit - January 2012). A good example of the transformation is evident from the Phase IV test pits (See Photo 2 - Test Pit 1 January 2015 below). Other examples are the various dams constructed in the immediate area where only the Y-J colors remain, the rock-like materials have transformed back to soil.

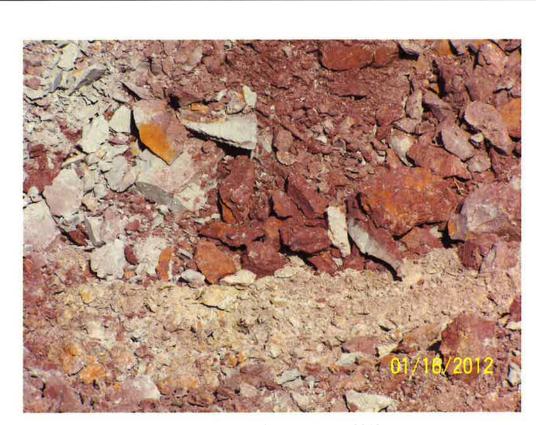


Photo 1 - Test Pit 1 - January 2012

Photo 2 - Test Pit 1 - January 2015

2.1.1 Sonic Drilling Limitations

Sonic drilling is a recognized method for geoenvironmental drilling (ASTM D6914-04 (2010)) suitable for meeting the requirements of the Municipal Solid Waste Management Regulations (MSWMR). However, the Sonic drilling/sampling methods used predominantly in Phases II and III of the earlier investigations imposed certain limitations. The method does not provide "undisturbed" samples for such geotechnical testing purposes as strength, consolidation, or permeability. In the earlier investigations, two deep test pits (Phase IV) were utilized to obtain representative, undisturbed test samples of all four identified subsurface strata for subsequent laboratory testing.

September 2015

The SIR and GDR discuss the following issues that are now further addressed by this Report:

- <u>SIR</u>, § 2.2.1 Soil Borings discusses both the advantages and the limitations of the Sonic drilling methodology.
- <u>SIR, § 2.2.2 Piezometers</u> discusses the possible ramifications, i.e., formation disturbance, etc., of setting piezometers in borings drilled in the Y-J with Sonic methods.
- <u>SIR</u>, § 4.2.2 Water Levels Measured in Piezometers assumed vertical hydraulic connection between near-surface and deeper stratigraphic units as a consequence of Sonic drilling. Note that this assumption is a significant variance from the Y-J Groundwater Availability Model (GAM) (TWDB, 2010)
- The annular seal in all Phase I-III piezometers consisted of "granular bentonite chips" added from the surface. *SIR, Appendix F, Piezometer Construction Diagrams*. There does not appear to have been any attempt to address the possible formation damage and caving due to the Sonic drilling by the use of pressure grout from the bottom to the top.

2.1.2 Subsurface Water Information

Some of the field descriptions of cores from the previous Phases I to III boring logs described the subsurface conditions as "moist", but approximately 200 Atterberg Limit and natural moisture content determinations showed that moisture contents were consistently dry of the Plastic Limit. In fact, natural moisture contents were seven to eight percentage points (on average) below the Plastic Limit. (GDR, § 5.0 Conclusions, R-K, 2015). In general, the following is noted regarding the Phase I to IV investigations:

- The Phase I to III piezometer installations showed comparable stable water levels regardless of the installed depth (SIR, § 4.2.2 Water Levels Measured in Piezometers, R-K, 2015).
- The Phase IV Test Pits encountered slight seepage in TP-1 associated with the Recent-Pleistocene (R-P) and Y-J contact zone during excavation; however, TP-1 was left open and the seepage dried up overnight and no accumulation occurred. TP-2 did not encounter shallow subsurface water. (SIR, § 4.2.4 Observations from Test Pits, R-K, 2015).

 Note that the landfill design assumes the water level at the ground surface as a conservative measure.

2.1.3 Hydrogeologic Testing of Phase III Piezometers

Part III, Attachment III-E, Appendix III-E.4, <u>Summary of Hydrogeologic Testing in Selected Piezometers</u> discusses the hydrogeologic testing that was conducted in ten piezometers installed as part of the Phase III site investigation at the site. The Phase III piezometers were installed in what appeared to be potentially transmissive zones, i.e., isolated sandy and/or silty intervals in the predominantly clay matrix based on the evaluation of the previous Phase I, II, and III boring logs and geophysical data. Information on the piezometer installations can be found in Part III, Attachment III-E, Appendix III-E.2, <u>Subsurface Investigation Report</u>. The hydrogeologic tests on select piezometers included falling head and rising head tests induced by inserting and removing solid slugs (i.e., slug tests). Based on the results of the slug tests, a subset of five piezometers indicating the highest transmissive potential were selected for additional higher-stress, single-well, pump-down tests.

The test results, including those from what were the most transmissive units in the subsurface, as determined by the borings and geophysical logs, showed that subsurface conditions are not transmissive. In fact, all of the test results were in the poorly permeable to practically impervious range as defined by Terzaghi, Peck, and Mesri [3rd Edition, 1996] and others. That is, the pump down tests proved that the materials that were indicated to be the most transmissive, were not very transmissive at all.

3.0 PHASE V INVESTIGATION

As discussed above, the Phase V investigation was developed and implemented to obtain additional information regarding the soils and subsurface water at the site for design considerations. The information is presented to update and augment the information previously presented to meet the MSWMR.

3.1.1 Field Investigation

The field portion of the Phase V Investigation was conducted in January and February, 2015. A total of three core (sample) borings were drilled as shown on Figure 1 in Attachment A to this Appendix III-E.5 (Figure III-E.5-A.1 in Attachment III-E.5-A to this Appendix). The borings have been included (annotated) on the cross sections previously provided in Appendix III-E.2 (SIR) for comparison purposes. They are included as Figures III-E.5-A.2 and 3 in Attachment III-E.5-A.

A large truck-mounted Gardner-Denver Model 15W drilling rig was used. Sample borings were drilled to an approximate depth of 150 feet. A total of five piezometers were set – four of the piezometers were set in "twin" holes adjacent (approximately 0 – 50 feet away) to the sample boring locations. All drilling and piezometer installation was performed by a Texas-Licensed Water Well Driller under the direction of a Professional Geologist (PG) with over twenty seven years of experience employed by CB&I. The PG, licensed in Illinois, Indiana and Wisconsin, also logged the samples as they were obtained and prepared them for shipment for review and laboratory testing. See the Phase V Logs of Borings included as Attachment B to Appendix III-E.5 (III-E.5-B). The drilling method used was primarily "air rotary" with "mud-rotary" used in one instance. Surface casing was employed to "seal" down to below the highly-weathered Y-J and particularly, the "contact zone" between the R-P and Y-J to minimize the intrusion of shallow subsurface water, eliminate shallow caving of unconsolidated materials and fall-in of any gravel potentially damaging to either the core bit or the core recovery. At B-52, a watertight seal was not obtained and the combination of minimal amounts of water combined with highly plastic clay cuttings required a switch to mud rotary drilling.

Sample drilling of the Y-J was conducted using a conventional Christensen 4-5/8 x 3-inch double tube core barrel employing a face-discharge ChrisDril bit and equipped with a split inner barrel. See photos 1 and 2 in Attachment C to this Appendix (III-E.5-C). Sample borings were cored continuously to the total depth with the recovered core being 3-inches in diameter. Both core recovery (as a percent) and Rock Quality Index or RQD (as a percent) are provided for each core run on the boring log. Recovered core was logged along with drilling observations, etc. Core samples were packaged and placed in waxed core boxes specifically manufactured for core storage. Visual reference samples were placed in glass jars. Boring B-58 was converted to a piezometer while borings B-55 and B-52 were pressure grouted from the bottom to top using a tremie and bentonite grout.

Photo 3 - Grouting Boring B-52 - January 2015

7

Two piezometers were set at the B-52 location – P-52S or shallow and P-52D or deep. Both piezometers were drilled with air rotary in separate holes for accurate subsurface water identification possibly unavailable from the original B-52 boring. Since the original B-52 was drilled using mud-rotary techniques, the process could have masked the identification of limited subsurface water and produced the results shown as moist on the log of borings. The "twin" holes were also used to avoid potential problems associated with plugging the original borehole back up to the desired screen interval.

Piezometer P-55D was also set in a separately drilled "twin" hole in lieu of plugging (grouting) boring B-55 back up to the screened interval. Piezometer P-58D was set to the full depth in boring B-58 and the shallow piezometer P-58S was set in an adjacent "twin" hole. Two-inch diameter piezometers were set in holes that were drilled using a 6-1/4-inch drag or wing bit (including the reaming of B-58 for piezometer installation). Nominal 10-foot long screens, centered in a 15-foot filter-packed interval, were used for all piezometers. The annular seal was provided using a grout pump and tremie to place bentonite grout from the bottom to top. For the shallow piezometer installation P-52S, the annular seal was constructed from bentonite chips placed in 6-inch lifts and hydrated. Piezometer data sheets are included in Attachment III-E.5-D. Copies of well reports furnished to the Texas Department of Licensing and Regulation (TDLR) are included in Attachment III-E.5-E.

Table 1 – Piezometer Construction Summary								
Piezometer	Screened Unit	Total Depth Interval (feet bgs)	Screened Interval (feet bgs)					
P-52S	Shallow, Wet Sandstone	30	18-28					
P-52D	Deep, Dry Sandstone	92	80-90					
P-55D	Deep, Wet Sandstone	105	93-103					
P-58S	Shallow, Wet Claystone	35	20-30					
P-58D	Deep, Dry Claystone	150	140-150					

Upon completion of piezometer installation, either falling head tests (piezometers P-52S, P-52D, P-55D, and P-58D) and/or rising head tests (piezometer P-58S) were conducted for at least twenty-four hours to verify piezometer functionality. The results of those tests are discussed below.

3.1.2 Subsurface Water Observations

Observations of subsurface water were of particular interest during this investigation since almost all strata in the previous Phase I-III borings were logged as "moist"; while subsequent geotechnical testing on the materials consistently showed moisture contents 7 to 8 percentage points below the plastic limit. Further, excavated materials were dry and there was an absence of water in the Phase IV test pit excavations. This difference may be related to the fact that significant water amounts were added downhole during the Phase II and III Sonic drilling activities because of the very dense, overconsolidated subsurface materials. This water addition may have created a wet skin on recovered samples that were logged as "moist."

For Phase V, observations of subsurface water were made during the drilling of the holes and examination of the recovered samples after boring completion and during installation of the piezometers and piezometer installation. The use of air rotary drilling was the preferred method to aid in these observations since no water was introduced.

During Core Drilling

- Boring B-52 began with air-rotary drilling and encountered limited amounts of subsurface water associated with the Y-J and R-P contact zone at about the 10-foot depth. The underlying Y-J was mostly sandstone to approximately 28 feet. A surface casing was set to 20 feet and was ineffective in eliminating water entrance into the boring. To assist in efficiently removing the clay cuttings as the core hole was advanced, the coring technique was switched to mud rotary and continued to the termination depth of 150 feet. However, all core was logged as dry upon close examination using the standard technique of carefully removing any "skin" from the core surface before field examination (see photographs in Attachment III-E.5-C of this Appendix).
- Boring B-55 used air-rotary drilling to core all the way down to the completion depth of 153 feet. Moist soil materials were encountered in Shelby Tube samples down to the R-P and Y-J contact zone (approximately 11 to 12 feet in depth); however, no shallow subsurface water was encountered. While reaming out the borehole for the surface casing, moisture was indicated in the cuttings from approximately the 10-foot depth. Surface casing was set to 17

feet. Moisture was noted in some of the recovered core samples and small amounts of water were observed at several intervals during drilling; notably 32 to 36 feet and 95.5 to 101 feet.

• Boring B-58 used air-rotary drilling to core all the way down to the completion depth of 150 feet. Moist soil materials were encountered in Shelby Tube samples down to the R-P and Y-J contact zone (approximately 11 to 12 feet in depth); however, no shallow subsurface water was encountered. Moisture was noted in some of the recovered core samples and small amounts of water were observed at several intervals during drilling; notably 12 to 17 feet, 22.5 to 30.5 and 32 to 32.3 feet.

Select photos of the core material are included as Attachment C to this Appendix (III-E.5-C).

During Piezometer Installation

- Piezometer P-52S was installed in a twin borehole some 10 feet west of boring B-52. The 30-foot-deep piezometer boring was drilled with air. Moisture was observed in the cuttings at approximately the 22-foot depth during drilling; however, the hole was dry at the completion of drilling activities.
- Piezometer P-52D was installed in a twin borehole some 30 feet west of boring B-52.
 Surface casing was set to a depth of 30 feet. The 92-foot-deep piezometer boring was drilled with air. Moisture was observed in the cuttings at approximately the 40-foot depth during drilling; however, the hole was dry at completion of drilling.
- Piezometer P-55D was installed in a twin borehole approximately 40 feet southwest of boring B-55. Surface casing was set to a depth of 45 feet. The 105-foot-deep piezometer boring was drilled with air. Moisture was observed in the cuttings at approximately the 32 to 36-foot and 90 to 105-foot depth intervals during drilling; however, the hole was dry at completion of drilling.
- Piezometer P-58S was installed in a twin hole approximately 30 feet northwest of boring B-58. No moisture was observed during drilling of the twin hole with air rotary to a depth of 35-feet; however, slight water entered the hole during piezometer installation.

• Piezometer P-58D was set in the B-58 borehole to 150-feet. Surface casing was set to a depth of 40 feet. No moisture was observed at depth during coring or during reaming for the piezometer installation.

After Boring and/or Piezometer Completion

- Boring B-52 took several days to complete drilling. Water levels were taken each day prior
 to the resumption of drilling. Water levels were approximately 8 feet below ground surface
 (bgs). Water levels observed in piezometers P-52S and P-52D were approximately the same
 as in boring B-52.
- Boring B-55 took several days to complete drilling. Water levels were taken each day prior to the resumption of drilling. Water levels were approximately 7 to 10 feet bgs. Water levels in piezometer P-55D was approximately the same as in boring B-55.
- Boring B-58 took several days to complete drilling. Water levels were taken each day prior to the resumption of drilling. After the first day, the 40-foot deep hole was dry. After the second day, water was at 22 feet bgs in the 105-foot deep hole. Water levels in piezometer P-58D measured over several days were approximately 116 feet bgs prior to the falling head test. The piezometer P-58S water level was approximately 23 feet bgs prior to the rising head test.

3.1.3 Piezometer Recovery Testing Results

Although primarily intended to verify piezometer functionality, the falling head and or rising head testing did provide an opportunity for evaluating the in situ permeability (hydraulic conductivity) of the Y-J materials represented in the screened interval of piezometers P-52S, P-52D, P-55D, and P-58S. Not unexpectedly, the time lag for piezometer P-58D was so large that a 28-hour test provided insufficient recovery for reasonable analysis. For hydraulic conductivity analyses, Hvorslev's Method "F" was used along with the standard assumption that horizontal permeability is ten times (an order of magnitude) greater than vertical permeability. Method F is probably most appropriate for the piezometers screened in discrete sand units, i.e., the discrete sandstone unit piezometers, P-52S, P-52D and P-55D whereas Method G, i.e., uniform

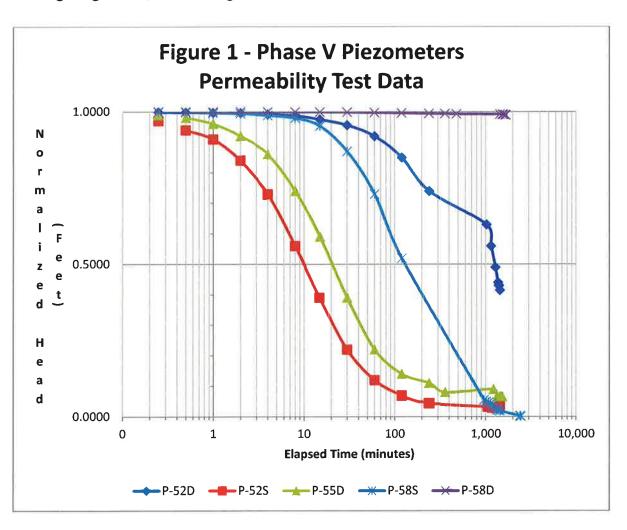

conditions, might be more appropriate for the general claystone matrix piezometers, P-58S and P-58D. However, Method F will estimate a permeability about 10% higher than Method G and thus its use is conservative. Note that if an anisotropy ratio of 100 had been assumed, which is more consistent with the Y-J GAM, the horizontal permeability would increase approximately 20% when compared to an anisotropy ratio of 10. Based on the recovery test data, calculated horizontal permeabilities are as follows:

	Table 2 – Permeability Results										
Piezometer	Screened Unit	Test Type	Initial Test Head, Ho (feet below TOC)	Test Duration (hours)	Equilibrium Reached? (Y / N)	Recovery (%)	Horizontal Permeability (cm/sec)				
P-52S	Shallow, Wet Sandstone	Falling Head	11.63	24	Y	>99	3.21x10 ⁻⁵				
P-52D	Deep, Dry Sandstone	Falling Head	11.29	24	N	>58	6.91x10 ⁻⁷				
P-55D	Deep, Wet Sandstone	Falling Head	10.28	25.45	Y	>99	1.64x10 ⁻⁵				
P-58S	Shallow, Wet Claystone	Rising Head	25.38	43	Y	100	3.81x10 ⁻⁶				
P-58D	Deep, Dry Claystone	Falling Head	118.56	28	N	<1	NA				

Piezometer Test Data:

Piezometer recovery test data was obtained through February 14, 2015 for all five of the Phase V piezometers. Although recovery was not complete for all tests, the data for four piezometers was sufficiently complete for analysis. Semi-logarithmic plotting of the data indicated a classic or typical response with a good straight-line section in the middle of the signature. Points defining the ends of the straight lines on the graphs were picked from the tabular data. In addition, all data were tabulated and plotted in "normalized" form, i.e., the piezometer head reading at a given time was divided by the head reading at time zero. This procedure allows comparative

plotting of all piezometer tests to the same scale and is a useful tool to compare differences between geologic units, etc. See Figure 1.

Methodology:

Hvorslev's Variable Head Method "F" (Hvorslev, 1951) was selected for the preliminary analysis. Method F may provide a more realistic estimate for a "sand" unit between "confining layers." In addition, Method F provides a more conservative (higher) estimate of horizontal permeability than Method G. It should be noted that Method G is for a screen / filterpack in a uniform matrix without confining layers. Method G would also be potentially more applicable to the conditions at P-58S set in a shallow moist claystone interval. The Anisotropy ratio, **m**, was based on the typical assumption that horizontal permeability is at least 10 times the vertical permeability for bedded sedimentary materials. Note also that by assuming an anisotropy ratio

of 10 results in a higher calculated horizontal permeability than would be calculated assuming equal permeabilities in both the horizontal and vertical directions (therefore conservative for this purpose).

Piezometer Calculations:

Calculations were made using the filter pack length (recommended). All piezometers have the same construction dimensions. Applicable parameters (dimensional data and assumed anisotropy) used in the calculations are as follows:

- d (screen / riser diameter) = 2 inches = 5.08 cm
- **D** (borehole / filter pack diameter) = 6.5 inches = 16.51 cm
- L_s (screen length) = 10 feet = 304.8 cm
- L_{fp} (filter pack length) = 15 feet = 457.2 cm
- **k**_h (horizontal permeability) = to be calculated in cm/sec
- k_v (vertical permeability) = assumed to be $k_h/10$
- **m** (transformation ratio) = $(k_h / k_v)^{1/2} = 3.162$
- $\mathbf{m} \cdot \mathbf{L}/\mathbf{D} = 58.38$ (based on screen length) or 87.56 (based on filter pack length)
- \mathbf{H} = piezometer reading relative to still water level (SWL) in cm at elapsed time, \mathbf{t}
- t = elapsed time corresponding to piezometer level reading in seconds

Since 2 x m x L/D >> 4, then Hvorslev's Equation [Method "F"] can be simplified to:

$$\mathbf{k}_h = ((d^2 \times ln \left(4 \times m \times \frac{L}{D}\right)) \div (8 \times L \times (t_2 - t_1))) \times ln(H_1 \div H_2)$$

Since the construction dimensions are the same for all piezometers, Hvorslev's Method F Equation, for the filter pack length based calculations, can be expressed as:

$$k_h = 0.041336676 \text{ cm x ln } (H_1/H_2) \div (t_2 - t_1)$$

Calculations are summarized in the Table below:

	Table 3 – Horizontal Permeability Calculations										
Piezometer (Piez.)	Elapsed Time, t ₁ (minutes)	$\mathbf{e}, \mathbf{t}_1 \mid \mathbf{Time}, \mathbf{t}_2 \mid (\mathbf{sec}) \mid$		Piez. Head, H ₁	Piez. Head, H ₂	$\mathbf{H}_1/\mathbf{H}_2$	Method F k _h (cm/sec)				
				(ft)	(ft)						
P-52S	4	30	1,560	8.46	2.52	3.3571428	3.21x10 ⁻⁵				
P-52D	1025	1440	24,900	7.11	4.69	1.5159915	6.91x 10 ⁻⁷				
P-55D	8	60	3,120	7.65	2.22	3.4459459	1.64x10 ⁻⁵				
P-58S	60	120	3,600	10.9	7.82	1.3938619	3.81x10 ⁻⁶				

Note that Hvorslev's Method G Equation, for the filter pack length based calculations, can be expressed as:

$$k_h = 0.03644527 \text{ cm} * \ln (H_1/H_2) \div (t_2 - t_1)$$

and, Hvorslev's Method F Equation, for screen length based calculations, can be expressed as:

$$k_h = 0.057713842 \text{ cm} * \ln (H_1/H_2) \div (t_2 - t_1)$$

3.1.4 Geotechnical Test Results

Surface material from where Test Pit 1 was backfilled after excavation, afforded an opportunity to observe landfill component materials in a "processed" state. Geotechnical testing, consisting of Atterberg Limits and Percent Passing the No. 200 Sieve, was conducted on two bulk samples of backfill from the Test Pit #1 location where they had weathered in place since the original construction in early 2012. The bulk samples collected represented two predominant types of material – Green Clay (CH) and Red Clay (CH) – resulting from the pit excavation. Plasticity Indices were 59 to 60 and Percent Passing the No. 200 Sieve ranged from 75 (green clay) to 98 (Red Clay). Significantly, exposure to weathering had completely transformed the clays from their original rock-like appearance to near-homogeneous soils. See Photos 1 and 2 above. The appearance of test pit backfill material is similar to the constructed pond dams and other drainage features on site.

Geotechnical testing was conducted on representative samples of materials encountered in all three Phase V borings. Results of the testing can be found in Appendix III-E.5-F and are as follows:

- Atterberg Limits (ASTM D4318) Thirty-two tests were conducted. With the exception of one non-plastic result, the remaining thirty one tests showed a consistent relationship when plotted on a Plasticity Chart commonly used as part of soil classification. The plotted data was consistent with previous Phases I-IV results. It is noted that all of the data plots well above the "A-Line" and only eight results had Liquid limits less than 50, i.e., the majority of the tested materials were highly plastic.
- Moisture Content (ASTM D2216) Thirty moisture content determinations were made. Twenty-six of the moisture content tests were on samples that were also tested for Atterberg Limits. A comparison of moisture contents to Plastic Limits indicated moisture contents averaging nine to ten percentage points below the corresponding Plastic Limit, i.e., the in situ moisture conditions are very dry and indicative of significant overconsolidation.
- Percent Passing the No. 200 Sieve (ASTM D422) Fourteen tests were conducted on samples that appeared to have some coarse-grained material. Percent passing the No. 200 sieve varied from 18 to 100 percent. Predictably, materials with a lower percentage passing the No. 200 sieve also exhibited the lower plasticities.
- Unconfined Compressive Strength (ASTM D2166) Four unconfined compression tests
 were run on undisturbed samples. Compressive strengths ranged from 31.1 to 124.9 tons
 per square foot (tsf). The unconfined compression test results confirm that the subsurface
 materials are heavily over-consolidated or pre-consolidated over geologic time. It is
 concluded that foundation strata are strong and incompressible.
- Permeability tests (ASTM D5084-10) Four tests were conducted on undisturbed samples to determine their vertical-axis permeability. Three test results indicated permeability (hydraulic conductivity) in the 10⁻⁹ to 10⁻¹¹ cm/sec range. A fourth test result was in the 10⁻⁷ range; however, testing of that sample was delayed in the laboratory and micro-cracking was observed in the test specimen that could have affected the test result.

4.0 Yegua-Jackson Boundary Definition

A common basis for distinguishing between the Yegua and Jackson has been to assign the lowest predominantly sandstone strata to the Jackson. A review of the NRCS Web Soil Survey "Parent Material Name" mapping indicated that soils on higher elevation areas to the north, east and south of the site were derived from sandstone. With respect to Figure 4 in Attachment III-E.5-A (III.E-5.A-4), these sandstone-derived soils are the Aguilares (AgB) and Copita (CpB) soils. Similarly, the NRCS indicates that soils in the lower elevation "salt flat" and areas to the west of the site were derived from shale. The previous Phase I-IV investigations and associated site reconnaissance had established that the soils in the flat areas dominating the site are clayey in nature to a significant depth with only a few isolated sand units. During the Phase V investigation, a site reconnaissance was conducted in the elevated areas immediately to the north, east, and south of the salt flat area. The site reconnaissance of those elevated areas found a distinct sandy character to the surface soils and a significant change in vegetation compared to the lower elevation "salt flat" that covers most of the PERC site.

Based on the Phase V site reconnaissance, evidence suggests that most of site is located just below the Yegua-Jackson boundary (in the Yegua formation) due to surface erosion and remnants of the Jackson that surround the site at higher elevations.

5.0 Subsurface Water Quality Information

In July 2010, subsurface water samples from Phase I and II borings B-1, B-2, B-6, B-10, B-13, B-18, and the deep ranch well, were analyzed for:

- Aluminum
- Chromium
- Copper
- Iron
- Manganese
- Silver
- Zinc
- Chloride
- Fluoride
- Nitrate as N
- Sulfate
- pH
- Specific Conductance
- Total Dissolved Solids

With the exception of the deep ranch well with a Total Dissolved Solids (TDS) content of 2,100 mg/L, the remaining shallow subsurface water samples had TDS in the range of 34,600 to 66,600 mg/L. Chloride ranged from 22,600 to 37,800 mg/L for the shallow subsurface water samples.

In March 2011, additional subsurface water samples from Phase I and II borings B-1, B-2, B-6, B-10, B-11, B-13, B-18, B-24, B-26, B-27, and surface water samples from Burrito Tank (T-1) and the unnamed tank (T-2) above Burrito Tank, were analyzed for:

- Fluoride
- Chloride
- Nitrate as N
- Sulfate
- Specific Conductance
- pH

The shallow subsurface water samples had Chloride ranging from 12,000 to 31,800 mg/L.

A commonly used classification system for water based on TDS and Conductivity is as follows:

- Fresh <1,000 mg/L TDS
- Brackish $\ge 1,000$ to < 10,000 mg/L TDS
- Saline $\geq 10,000 \text{ to } < 30,000 \text{ mg/L TDS}$
- Brine \geq 30,000 mg/L TDS
- Sea Water ~55,000 μmhos/cm

Based on the above classification system, the shallow subsurface water would be classified as saline or brine and the deep ranch well would be classified as brackish based on the July 2010 analysis. Only the two surface water bodies contain water that could be considered fresh.

Additionally, sea water is anticipated to have conductivity values of around 55,000 µmhos/cm. Except for the ranch well, conductivity values from the subsurface water tests for July 2010 ranged from 60,300 to 114,000. Values for subsurface water in March 2011 ranged from 55,100 to 84,100. See results of the subsurface water quality testing in Appendix III-E.5-G.

6.0 CONCLUSIONS

The Phase V subsurface investigation was successful in meeting the desired objectives. The following conclusions have been determined from this effort.

Drilling and sampling – With a single exception, air-rotary drilling was successfully used to both core subsurface materials and to drill boreholes for piezometer installation. The use of air rotary without any water addition allowed careful evaluation of the presence and quantity of subsurface water. Mud rotary coring was required in one boring due to problems associated with a shallow perched water table. Sampling with a double-tube core barrel recovered undisturbed samples (three-inch diameter core) for detailed logging and geotechnical testing purposes.

Subsurface materials – The borings demonstrated that predominant Yegua-Jackson materials were highly plastic, moderately hard, heavily overconsolidated claystones with thin horizontal silty/sandy partings down to the approximate 150-foot completion depths of the borings. The claystones were fissured with occasional slickensides and fractures. Some isolated sandstone units were encountered. With the exception of some moist zones encountered near the Yegua-Jackson contact with surficial Recent-Pleistocene deposits, i.e, an intermittent perched water table location, and some moist zones associated with either fractured claystone and/or sandstone units, the recovered materials were dry.

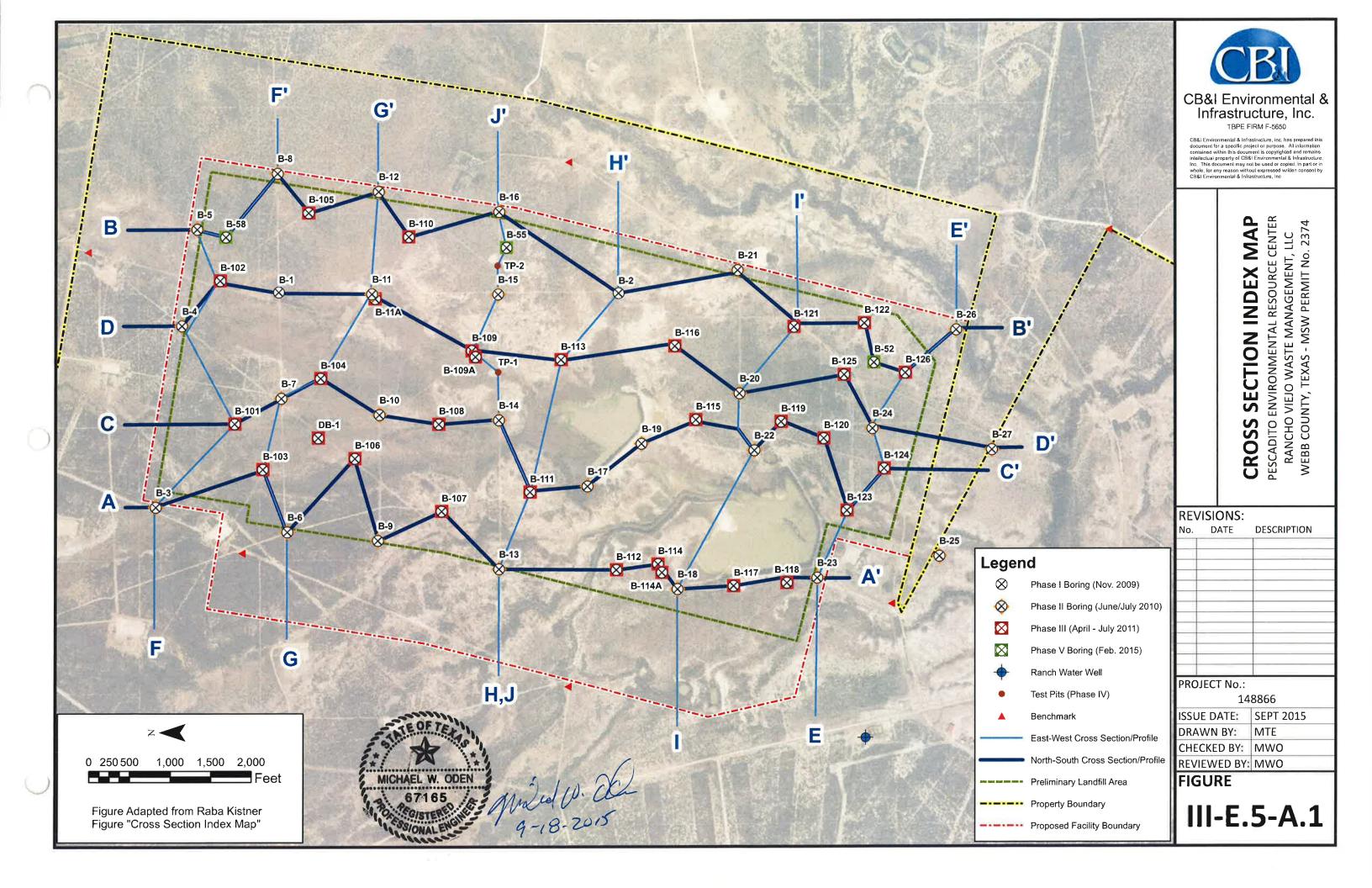
Subsurface water — Subsurface water was encountered during drilling at shallow depth in association with a shallow perched water table near the Yegua-Jackson contact with surficial Recent-Pleistocene deposits. There was a limited occurrence of subsurface water at depth associated with either fractured claystone and/or sandstone units. Both shallow (S) and deep (D) piezometers were installed to further evaluate the encountered subsurface water and to obtain estimates of subsurface permeability. To ensure annular seal integrity, bentonite grout was placed using a grout pump and tremie for the three deep piezometers and for the deeper of the two shallow piezometers.

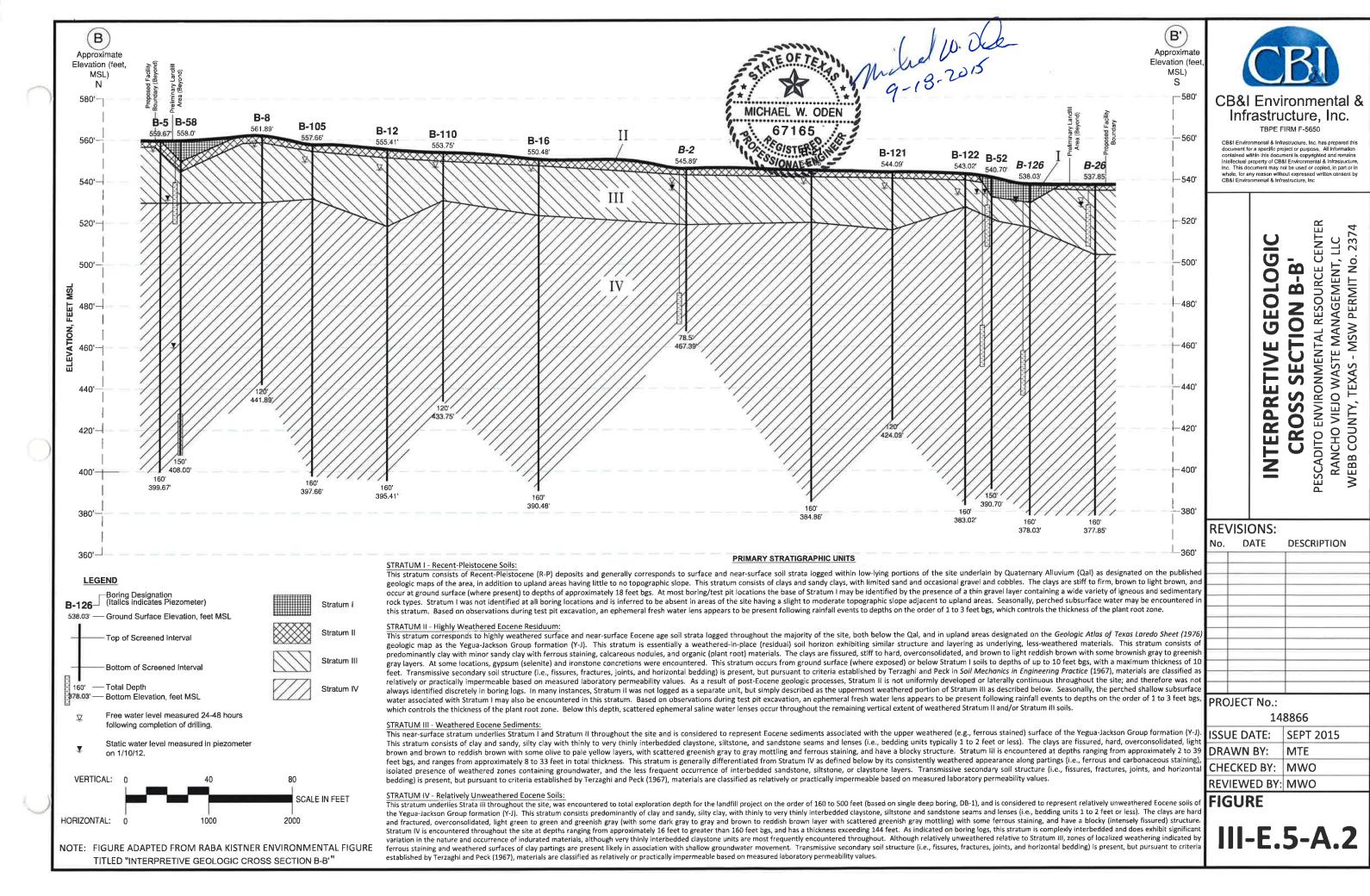
Geotechnical testing — Representative samples of subsurface materials were tested in the laboratory for classification properties, moisture content, permeability, and compressive strength. The classification, moisture content, and compressive strength results were consistent with the description of subsurface materials made in the field. Falling head and/or rising head permeability tests were conducted in all piezometers to provide additional information. The field permeability test results were consistent with the laboratory results and demonstrate poorly permeable and/or practically impervious subsurface conditions. The unconfined compression test results confirmed the subsurface materials are heavily over-consolidated or pre-consolidated over geologic time and demonstrated that foundation strata are strong and incompressible.

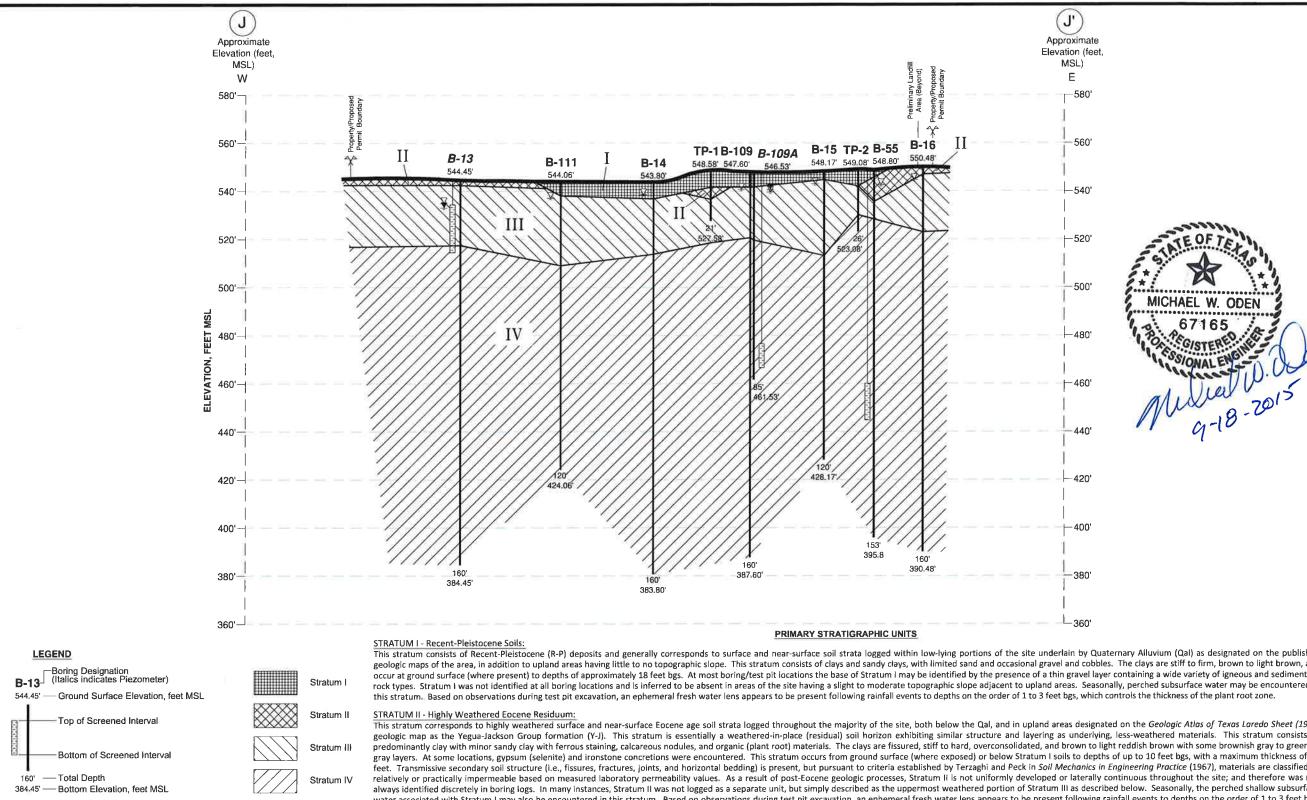
Consistency with results from previous Phase I-IV investigations — Phase V confirmed the predominance of highly plastic claystone materials in the Yegua-Jackson at the site. Geotechnical classification and moisture content testing results were also consistent. Phase V laboratory and piezometer permeability testing was consistent with results from piezometer testing of Phase II and III piezometers and demonstrate poorly permeable and/or practically impervious subsurface conditions. As expected, Phase V permeability testing confirmed that Phase II and III laboratory permeability testing was apparently impacted by the poor quality of recovered Roto-Sonic samples. The results of the Phase V investigation, earlier Phase IV test pit investigation, and Phase I-III geotechnical testing, all indicate that subsurface conditions are predominantly dry and the term "moist" as applied to the strata descriptions on the Phase II and III boring logs was apparently an artifact of water addition during Roto-Sonic drilling.

Both the earlier Phase IV test pit investigation and this Phase V investigation indicate minimal presence and quantity of subsurface water – particularly at depth. The results of the Phase II and III investigation could be interpreted to indicate more subsurface water is present and less random in occurrence. Again, it is believed this inconsistency can be traced to the consequences associated with Sonic drilling and the use of bentonite chips in the piezometers as opposed to bentonite grout. All investigations to date indicate the potential for a shallow perched water table, containing saline water, associated with the Yegua-Jackson contact with surficial Recent-Pleistocene deposits that appears to be partially recharged by the perennial surface water bodies. Regardless, all investigative results confirm that subsurface materials are poorly permeable to

practically impervious and are incapable of transmitting significant quantities of subsurface water. The investigative results are consistent with the Yegua-Jackson Groundwater Availability Model (TWDB, 2010) calibrated input parameters.


III-E.5-A


Figures


III-E.5-A.1 Cross Section Index Map	1
III-E.5-A.2 Interpretive Geologic Cross Section B-B'	2
III-E.5A.3 Interpretive Geologic Cross Section J-J'	3
III-E.5-A.4 Webb County Soil Survey (Pages 1-4)	4

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

always identified discretely in boring logs. In many instances, Stratum II was not logged as a separate unit, but simply described as the uppermost weathered portion of Stratum III as described below. Seasonally, the perched shallow subsurface water associated with Stratum I may also be encountered in this stratum. Based on observations during test pit excavation, an ephemeral fresh water lens appears to be present following rainfall events to depths on the order of 1 to 3 feet bgs. which controls the thickness of the plant root zone. Below this depth, scattered ephemeral saline water lenses occur throughout the remaining vertical extent of weathered Stratum II and/or Stratum III soils.

STRATUM III - Weathered Eocene Sediments

Free water level measured 24-48 hours

Static water level measured in piezometer

1000

NOTE: FIGURE ADAPTED FROM RABA KISTNER ENVIRONMENTAL FIGURE

TITLED "INTERPRETIVE GEOLOGIC CROSS SECTION J-J'

following completion of drilling.

on 1/10/12.

VERTICAL:

HORIZONTAL:

This near-surface stratum underlies Stratum I and Stratum II throughout the site and is considered to represent Eocene sediments associated with the upper weathered (e.g., ferrous stained) surface of the Yegua-Jackson Group formation (Y-J) This stratum consists of clay and sandy, silty clay with thinly to very thinly interbedded claystone, siltstone, and sandstone seams and lenses (i.e., bedding units typically 1 to 2 feet or less). The clays are fissured, hard, overconsolidated, light brown and brown to reddish brown with some olive to pale yellow layers, with scattered greenish gray to gray mottling and ferrous staining, and have a blocky structure. Stratum III is encountered at depths ranging from approximately 2 to 35 feet bgs, and ranges from approximately 8 to 33 feet in total thickness. This stratum is generally differentiated from Stratum IV as defined below by its consistently weathered appearance along partings (i.e., ferrous and carbonaceous staining), isolated presence of weathered zones containing groundwater, and the less frequent occurrence of interbedded sandstone, siltstone, or claystone layers. Transmissive secondary soil structure (i.e., fissures, fractures, joints, and horizontal bedding) is present, but pursuant to criteria established by Terzaghi and Peck (1967), materials are classified as relatively or practically impermeable based on measured laboratory permeability values.

STRATUM IV - Relatively Unweathered Eocene Soils

SCALE IN FEET

2000

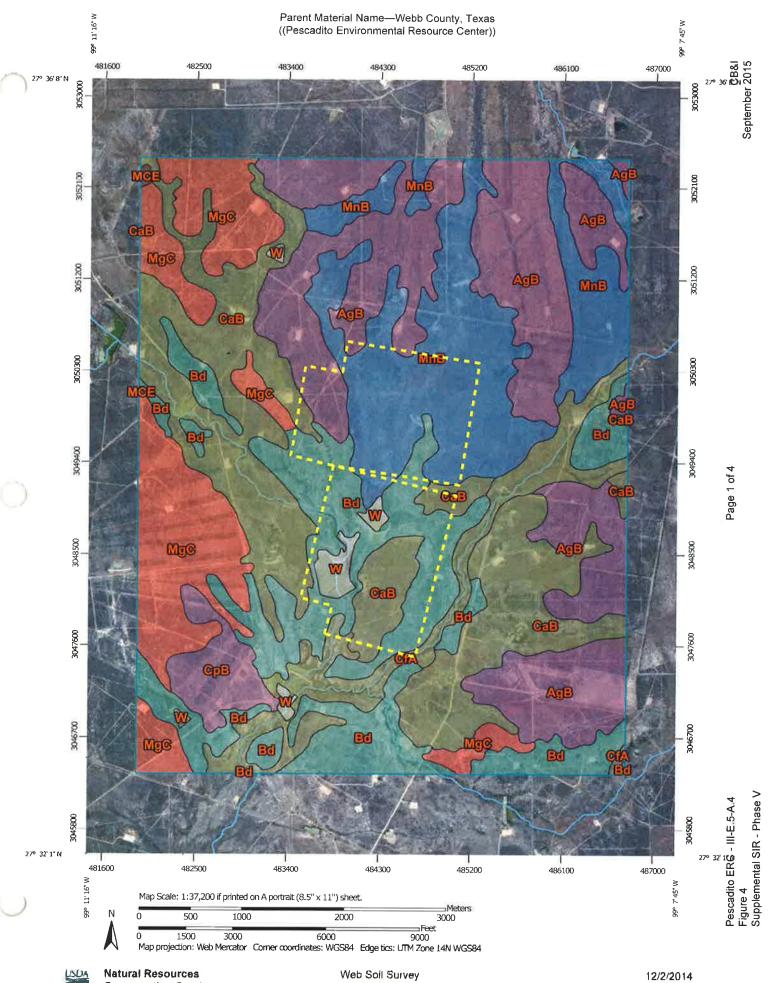
This stratum underlies Strata III throughout the site, was encountered to total exploration depth for the landfill project on the order of 160 to 500 feet (based on single deep boring, DB-1), and is considered to represent relatively unweathered Eocene soils of the Yegua-Jackson Group formation (Y-J). This stratum consists predominantly of clay and sandy, silty clay, with thinly to very thinly interbedded claystone, siltstone and sandstone seams and lenses (i.e., bedding units 1 to 2 feet or less). The clays are hard and fractured, overconsolidated, light green to green and greenish gray (with some dark gray to gray and brown to reddish brown layer with scattered greenish gray mottling) with some ferrous staining, and have a blocky (intensely fissured) structure. Stratum IV is encountered throughout the site at depths ranging from approximately 16 feet to greater than 160 feet bgs, and has a thickness exceeding 144 feet. As indicated on boring logs, this stratum is complexly interbedded and does exhibit significant variation in the nature and occurrence of indurated materials, although very thinly interbedded claystone units are most frequently encountered throughout. Although relatively unweathered relative to Stratum III, zones of localized weathering indicated by ferrous staining and weathered surfaces of clay partings are present likely in association with shallow groundwater movement. Transmissive secondary soil structure (i.e., fissures, fractures, joints, and horizontal bedding) is present, but pursuant to criteri established by Terzaghi and Peck (1967), materials are classified as relatively or practically impermeable based on measured laboratory permeability values.

CB&I Environmental & Infrastructure, Inc. TBPE FIRM F-5650

> CB&I Environmental & Infrastructure, Inc. has prepared this CBSI Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of CBSI Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by CBSI Environmental & Infrastructure, Inc.

> > RESOURCE CENTER

PESCADITO ENVIRONMENTAL


COUNTY, TEXAS - MSW PERMIT No. RANCHO VIEJO WASTE MANAGEMENT,

GEOLOGI SECTION INTERPRETIVE CROSS

	RE\	/ISIONS:	
	No.	DATE	DESCRIPTION
hed			
and tary ed in			
:0 111			
<i>976)</i> s of			
nish			
f 10 d as	\vdash		
not			

. 1		
,	PROJECT No.:	
	14	8866
	ISSUE DATE:	SEPT 2015
t)	DRAWN BY:	MTE
	CHECKED BY:	MWO
1	REVIEWED BY:	MWO
٫	FIGURE	

III-E.5-A.3

National Cooperative Soil Survey

Web Soil Survey

Parent Material Name - Webb County, Texas ((Pescadito Environmental Resource Center))

This product is generated from the USDA-NRCS certified data as distance and area. A projection that preserves area, such as the imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Maps from the Web Soil Survey are based on the Web Mercator Dec 12, 2010—Jun The orthophoto or other base map on which the soil lines were Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Soil map units are labeled (as space allows) for map scales Source of Map: Natural Resources Conservation Service projection, which preserves direction and shape but distorts compiled and digitized probably differs from the background Albers equal-area conic projection, should be used if more The soil surveys that comprise your AOI were mapped at Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Coordinate System: Web Mercator (EPSG:3857) MAP INFORMATION Version 11, Sep 29, 2014 Date(s) aerial images were photographed: Webb County, Texas of the version date(s) listed below. Survey Area Data: Soil Survey Area: 1:50,000 or larger. measurements. 1:31,700. 17, 2011 Aerial Photography Local Roads Background residuum weathered from residuum weathered from calcareous, saline, loamy Not rated or not available calcareous, saline clayey calcareous, saline, clayey residuum weathered from calcareous, saline, loamy residuum weathered from Not rated or not available saline loamy alluvium saline loamy alluvium Streams and Canals Interstate Highways MAP LEGEND calcareous clayey calcareous loamy Major Roads sandstone US Routes Soil Rating Points alluvium alluvium shale Rails Water Features Transportation • ? ŧ residuum weathered from calcareous, saline, clayey residuum weathered from calcareous, saline, loamy residuum weathered from residuum weathered from calcareous, saline, clayey residuum weathered from calcareous, saline clayey Not rated or not available calcareous, saline clayey saline loamy alluvium Area of Interest (AOI) calcareous clayey calcareous clayey calcareous loamy calcareous loamy Soil Rating Polygons Area of Interest (AOI) sandstone sandstone alluvium alluvium alluvium alluvium Soil Rating Lines shale } Soils

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AgB	Aguilares sandy clay loam, 0 to 3 percent slopes	calcareous loamy residuum weathered from sandstone	1,672.0	23.2%
Bd	Brundage fine sandy loam, 0 to 1 percent slopes, occasionally flooded	saline loamy alluvium	1,255.0	17.4%
СаВ	Catarina clay, 0 to 2 percent slopes	calcareous, saline clayey alluvium	1,477.5	20.5%
CfA	Catarina clay, occasionally flooded	calcareous, saline clayey alluvium	414.9	5.8%
СрВ	Copita fine sandy loam, 0 to 3 percent slopes	calcareous loamy residuum weathered from sandstone	175.4	2.4%
MCE	Maverick-Catarina complex, gently rolling	calcareous, saline, clayey residuum weathered from shale	5.9	0.1%
MgC	Moglia clay loam, 1 to 5 percent slopes	calcareous, saline, loamy residuum weathered from shale	918.4	12.8%
MnB	Montell clay, 0 to 3 percent slopes	calcareous clayey alluvium	1,208.9	16.8%
W	Water		72.8	1.0%
Totals for Area of Inter	est		7,200.8	100.0%

Description

Parent material name is a term for the general physical, chemical, and mineralogical composition of the unconsolidated material, mineral or organic, in which the soil forms. Mode of deposition and/or weathering may be implied by the name.

The soil surveyor uses parent material to develop a model used for soil mapping. Soil scientists and specialists in other disciplines use parent material to help interpret soil boundaries and project performance of the material below the soil. Many soil properties relate to parent material. Among these properties are proportions of sand, silt, and clay; chemical content; bulk density; structure; and the kinds and amounts of rock fragments. These properties affect interpretations and may be criteria used to separate soil series. Soil properties and landscape information may imply the kind of parent material.

For each soil in the database, one or more parent materials may be identified. One is marked as the representative or most commonly occurring. The representative parent material name is presented here.

Pescadito ERC - III-E.5-A.4

age 4 of 4

Pescadito ERC - III-E.5-A.4 Figure 4 Supplemental SIR - Phase V

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

III-E.5-B Phase V Logs of Borings

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

SHEET 1 OF 8

SURFACE ELEVATION: 540 NORTHING:

EASTING:

17090901

771370

PROJECT:

Pescadito Environmental Resource Center

CLIENT: PROJECT NO. 148866

Rancho Viejo Waste Management, LLC

BORING NO.

LOGGED BY: RWB

B-52

			8						
Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
0-	- 540	777	Dark Brown FAT CLAY(CH), trace fine						
1-	- 539		sand and silt, firm to stiff, high plasticity, moist, moderately saline and calcareous, blocky structure.	СН			0.75		(0-11'): Blind Drilled. Logged
2-	- 538						1.75		based on drilling cuttings
3-	- 537		Light Brown FAT CLAY(CH), little to some						observations during installation of 8" PVC surface
4-	- 536		fine sand and silt, stiff, high plasticity, moist, moderately saline and calcareous, blocky structure.				1.25		casing (0-10.5'). 8" PVC casing later removed
5-	- 535				Dillered				from boring and reinstalled (0-20)
6 –	- 534				Blind Drill (0-11')				
7-	- 533			CH	Rèc=106"				
8_	- 532								
10-	- 531 - 530		Trace subangular fine gravel (17mm), black coal gravel, and dark gray clay.						
			Hard, Brown FAT CLAYSTONE(CH), trace fine sand, dry, aphanitic to very fine	СН					
11-	- 529		grained, massive, well indurated, strongly calcareous, slightly saline, slightly			1			
12-	- 528		weathered. Hard, Pale Olive with Pale Brown FAT	СН					
13-	- 527		CLAYSTONE(CH), yellowish brown with strong brown iron staining, trace fine sand,						
14-	- 526		dry, aphanitic to very fine grained, blocky, well indurated, strongly calcareous, slightly saline, slightly weathered.		CB-1 (11-17')			19.44%	
15-	- 525		Hard, Pale Brown to Light Yellowish Brown with Light Olive Brown CLAYEY SANDSTONE(SC), little yellowish brown		Rec=36"			13.1170	
16-	- 524		iron staining, trace manganese infilling vertical fracture (13.1-14'), dry, fine						
17-	- 523		grained, massive, well indurated, strongly calcareous, slightly saline, slightly weathered.	sc		7			(17-23');Low recovery. Based
18	- 522	88							on drilling observations, it
19	- 521		trace chert gravel,		CB-2 (17-23') Rec=8"			0%	appeared that the
20 –			(Continued on next page)		1.00-0				ground away the sandstone.

07-08-2015

cts/2013/Pescadito Landfill/Boring Logs/B-52 bor

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.) REMARKS
6,25" Dia, Drag Bit(0-11');8,75"Dia, Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

SHEET 2 OF 8

CBI

SURFACE ELEVATION:

NORTHING:

EASTING:

540

17090901

771370

PROJECT:

Pescadito Environmental Resource Center

CLIENT: Rancho Viejo Waste Management, LLC
PROJECT NO.: 148866

BORING NO

LOGGED BY: RWB

B-52

									D-32
Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
20-	- 520	4//	(Continued from previous page)			7			16 16
21 –	- 519		Same, CLAYEY SANDSTONE(SC).						
22-	- 518				CB-2 (17-23') Rec=8"				
23-	- 517	15					1		(23-25');No
24—	- 516			sc	CB-3 (23-25') Rec=0"			0%	recovery. Based upon driller's/geologist's observations and
25 —	- 515		Same, CLAYEY SANDSTONE(SC).		1.92.3				logging of drilling cuttings, it
26 –	- 514								appeared that the core barrel bit had
27 –	- 513				CB-4 (25-29')			14.58%	ground away the sandstone.
28-	- 512		Hard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly	SP	(25-29') Rec=28"				
29 –	- 511		saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT						
30 —	- 510		CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh.		CB-5				
31 —	- 509		(28.2-32') Hard, Reddish Brown with Light Reddish Brown and trace Greenish Gray and White FAT CLAYSTONE(CH), dry,		(29-32') Rec=19"			25%	
32 —	- 508		aphanitic to very fine grained, laminated, well indurated, moderately calcareous,						
33-	- 507		slightly saline, slightly weathered, 45 degree compression fracture (28.6-29').	СН					
34-	- 506		(32-38.8') Hard, Reddish Brown with Light Reddish Brown and little Greenish Gray	011					0.5
35 —	- 505		FAT CLAYSTONE(CH), trace silt and light gray calcareous material, trace gypsum, dry, aphanitic to very fine grained, massive		CB-6 (32-37') Rec=60"			23.33%	
36 –	- 504		to blocky, well indurated, slightly calcareous, slightly saline, slightly weathered.						
37 —	- 503								
38 –	- 502				05.7				
39-	- 501		Hard, Gray with little Light Gray FAT CLAYSTONE(CH), trace fine sand, dry,	СН	CB-7 (37-42') Rec=60"			0%	
40 -	NG CO	NITD A	aphanitic to very fine grained, massive, well indurated, highly calcareous, (Continued). CTOR: Andrews & Foster WATER LEVE	I (ET) L	REMARKS	Ų.	l e	ř	<u> </u>

07-08-2015 T:\Projects\2013\Pescadito Landfil\Boring Logs\B-52.bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

SHEET 3 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

540

17090901

771370

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO.: 148866

BORING NO.

LOGGED BY: **RWB**

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
40	- 500	111	(Continued from previous page)	ĺ					
	- 499		(Cont'd) FAT CLAYSTONE (CH), slightly saline, fresh.	СН	CB-7 (37-42') Rec=60")	
42-	- 498								_1
	- 497 - 496		Hard, Weak Red with Reddish Brown and trace Greenish Gray FAT CLAYSTONE(CH), trace light gray highly calcareous silt, trace slickenslides, dry, aphanitic to very fine						
45-	- 495		grained, massive to trace blocky, well indurated, moderately calcareous, slightly saline, fresh.	СН	CB-8 (42-47') Rec=60"			93.33%	
46-	- 494								1
47-	493		Hard, Dark Gray to Gray FAT						
	- 492 - 491		CLAYSTONE(CH), trace to little light gray highly calcareous material, dry, aphanitic to very fine grained, massive, well indurated, moderately calcareous, saline, fresh.	СН					
50 —	- 490				CB-9 (47-53') Rec=50"			49.3%	
51-	489								
	- 488		(51.5-53');Hard, Dark Reddish Brown with Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic to very fine grained, massive,						
53-	- 487		well indurated, slightly calcareous and saline, fresh.						
	- 486		(53-59.5');Hard, Greenish Gray to Dark Greenish Gray with little Reddish Brown FAT CLAYSTONE(CH), trace to little silt,						
	- 485		trace fine sand, trace very dark gray staining in horizontal fractures (@54',54.9', 55.3', and 55.5'), trace vertical fractures	СН					
56 —	- 484		(53-53.5'), dry, aphanitic to very fine grained, massive to thinly bedded, well		CB-10				
57 —	- 483		indurated, slightly to moderately calcareous, slightly saline, slightly weathered.		(53-60') Rec=81"			82%	
58 –	- 482								
59-	- 481			_					
60 —		111	LEAN CLAYSTONE(CL) (Continued)	CL		5		3	

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air/Water Rotary
3"[.D.;4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.)

REMARKS
6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

07-08-2015 T

cts/2013/Pescadito Landfill/Boring Logs/B-52.bor

SHEET 4 OF 8

CBI

SURFACE ELEVATION:

NORTHING:

EASTING:

540

17090901

771370

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO.: 148866

BORING NO

LOGGED BY: RWB

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
6U —	- 480	111	(Continued from previous page)	T .	Treserving (may		r .		Y
	- 479 - 478		Hard, Dark Greenish Gray to Greenish Gray with Light Greenish Gray LEAN CLAYSTONE(CL), trace to little fine sand, dry, very fine grained, very thinly to medium bedded, well indurated, moderately	CL					
63-	- 477	11	calcareous and saline, fresh.	СН					
		#	Hard, Dark Greenish Gray to Greenish Gray FAT CLAYSTONE(CH), trace silt, dry,						
64-	- 476		aphanitic, massive with little blocky structure, well indurated, slightly	1					e e
65 —	- 475		calcareous and saline, fresh. Moderately hard to hard, Dark Reddish		CB-11 (60-70')			36.7%	
66 —	- 474		Brown with trace Greenish Gray and Grayish Brown FAT CLAYSTONE(CH), trace silt, dry, aphanitic to very fine grained,		Rec=84"				
	- 473 - 472		trace slickenslides, massive to blocky structure, moderately to well indurated, slightly calcareous and saline, trace horizontal and vertical fractures, fresh.	СН					
69-	- 471								
	- 470		Same, hard, well indurated, moderately calcareous and saline.						
71 –	- 469								
72 –	- 468	#	Hard, Weak Red with Greenish Gray and		CB-12 (70-74')			50%	
	- 467		Grayish Brown FAT CLAYSTONE(CH), dry, very fine grained to aphanitic, massive, well indurated, slightly calcareous and saline, fresh.	СН	Rec=43"				
74 –	- 466		Hard, Weak Red to Dusky Red with little				1-	1.	
75 –	- 465		Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic to very fine grained, massive with slightly blocky structure, well indurated,	СН					
76-	464		slightly calcareous and saline, fresh.						
77 –	463	///	Hard, Reddish Brown with little Greenish Gray LEAN CLAYSTONE(CL), trace fine		CB-13 (74-80') Rec=59"			41.67%	
	- 462 - 461		sand and calcareous nodules, dry, very fine grained to aphanitic, massive with slight blocky structure, well indurated, moderately calcareous to saline, fresh.	CL	1.60-33		el.		
, 0=	701	38,	(Continued on next page)						

07-08-2015 T:\Projects\2013\Pescadito Landfil\Boring Logs\B-52 bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"1.D.;4.875"O.D. Double Tube Core Barrel

Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

REMARKS
6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit
(0-20');Installed 8" PVC casing (0-20'); Core(11-150').
Boring was tremie-grouted with Quik-Grout bentonite/water
from 0-139' on 1/27/15. Boring had caved-in/sealed
from (139-150') prior to placement of bentonite grout.

SHEET 5 OF 8

SURFACE ELEVATION: 540

17090901

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING:

771370

PROJECT NO. 148866

BORING NO.

LOGGED BY: **RWB**

B-52

Depth in Feet	Surf, Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
80 –	460	111	(Continued from previous page)	ľ					
81 –	459		Same, LEAN CLAYSTONE(CL).						
00	450	18	, ,						
82-	458			CL					
83-	457								
84-	456	777	Hard, Reddish Brown with Greenish Gray						
85-	455		(84-84.2') grading to Greenish Gray(84.2-84.8') FAT CLAYSTONE(CH),	СН	CB-14				
			trace white silty calcareous material, dry, aphanitic to very fine grained, blocky, well	sc	(80-90') Rec=120"			100%	
86 –	- 454		indurated, trace very fine grained sand, mica and pyrite, slightly to highly	SC					
87-	453	111	calcareous, slightly saline, fresh. Hard, Greenish Gray CLAYEY						
) 88-	- 452		SANDSTONE(SC), trace mica and pyrite, dry, fine grained to very fine grained,	СН					
80-	4 51		massive, well indurated, slightly calcareous and saline, fresh.	СН					
00	101		Hard, Greenish Gray to Light Greenish Gray						
	- 450 - 449		with trace Gray FAT CLAYSTONE(CH) with little interbedded sandstone, trace calcareous concretions, trace pyrite, dry, very fine grained, laminated bedding, slightly	СН					
5150	1440		to highly calcareous, saline, vertical fracture.						
92 –	448	111	Hard, Reddish Gray to Weak Red with trace						
93-	447		Greenish Gray FAT CLAYSTONE(CH), dry, very fine grained to aphanitic, laminated,						
94 –	446		well indurated, moderately calcareous and saline, vertical fracture.						
OF .	445		Hard, Reddish Brown with Greenish Gray FAT CLAYSTONE(CH), trace highly	CL	CD 45				
90-	T 445	37	calcareous material, dry, aphanitic, blocky to massive, well indurated, slightly to		CB-15 (90-100') Rec=111"			84.16%	
96 –	444		moderately calcareous, saline. Hard, Light Reddish Brown with trace						
97 —	- 443		Greenish Gray LEAN CLAYSTONE(CL), dry, aphanitic, massive, well indurated, slightly calcareous and saline, fresh.						
98 –	442		Hard, Greenish Gray with light Greenish Gray LEAN CLAYSTONE(CL), dry, very fine	CL					
99-	- 441		grained, laminated to thinly bedded, well indurated, moderately calcareous, saline, fresh.	СН					
100-		1//		1		-	9		

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.)

REMARKS
6,25" Dia. Drag Bit(0-11');8,75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

SHEET 6 OF 8

CBI

SURFACE ELEVATION:

NORTHING:

EASTING:

540

17090901

771370

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT

PROJECT NO. 148866

BORING NO

LOGGED BY: RWB

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
100 — 101 — 102 —	- 439		(Continued from 98.5') Moderately hard, Dark Reddish Gray with little Reddish Brown and Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, moderately indurated, slightly calcareous and saline, slightly weathered.	СН					
103-			Moderately hard, Dark Reddish Gray with little Greenish Gray and trace Reddish Brown FAT CLAYSTONE(CH), 45 degree		-				
104-			angular fractures with slickenslides, dry, aphanitic, blocky, moderately indurated, slightly calcareous to saline, slightly weathered.				-		
105 — 106 —			Moderately hard to hard, Reddish Brown with Greenish Gray and trace Dark Reddish Gray FAT CLAYSTONE(CH), 45 degree		CB-16 (100-110') Rec=93"			36.67%	
107 —	- 433		angular fractures with slickenslides, dry, aphanitic, blocky, moderately indurated, slightly calcareous to saline, slightly weathered.						
108-	Î		(107-110'); hard, well indurated.	CH					
110-	- 430		(110-113'); hard, well indurated.						
111-									
112-			Hard, Reddish Brown with Greenish Gray						
114-	- 426		FAT CLAYSTONE(CH), little silt, trace fine sand, dry, very fine grained to aphanitic, massive, well indurated, slightly calcareous	СН	CB-17			54.000V	
115-			and saline, fresh. Hard, Dark Reddish Brown with Greenish Gray FAT CLAYSTONE(CH), trace white to light gray calcareous nodules and limestone	1	(110-119') Rec=82"			54.63%	
117-	- 423		concretions, dry, aphanitic, massive with slight blocky structures, well indurated, slightly to highly calcareous and slightly saline, slightly weathered.	СН					
118-									
120-			FAT CLAYSTONE(CH). (Continued on next page)	СН	CB-18 (119-129') Rec=60"		· · · · · · · · · · · · · · · · · · ·	Si i	
DRILL DRILL	ING CO	NTRA	CTOR: Andrews & Foster D: Air\Water Rotary WATER LEV	EL (FT.)	REMARKS 6.25" Dia. Drag	Bit(0-11'):	8.75"Dia. Tr	icone Roller	Bit

07-08-2015 T.\Projects\2013\Pescadito Landfill\Boring Logs\B-52.bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

6.25" Dia. Drag Bit(0-11'):8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

SHEET 7 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

540

17090901

771370

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

BORING NO.

PROJECT NO. 148866 LOGGED BY:

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
120	420	//	(Continued from 119')	V 5		(i.)		Y i	1
121		//	Hard, Dark Reddish Brown to Reddish Brown with Greenish Gray stratified FAT CLAYSTONE(CH), trace to little silt and fine sand, dry, aphanitic to very fine grained,						
122			medium bedded with trace laminations, well indurated, moderately to highly calcareous, saline, slightly weathered to fresh.						
124—	416			СН	CB-18				
125—					(119-129') Rec=60"			0%	
126									
128	412		Moderately hard to hard, Dark Greenish Gray to Greenish Gray with trace Dark Gray FAT CLAYSTONE(CH), trace pyrite,						
129			trace light gray highly calcareous silt, dry, aphanitic, blocky, well indurated, slightly calcareous, saline, fresh.						(129-131');No recovery. Logged based on drilling
130				СН	CB-19 (129-131') Rec=0"			0%	observations and cuttings. It appeared that the
132	408								core barrel bit ground away the claystone.
133	1	$^{\prime\prime}$	Hard, Dark Reddish Brown with Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, massive with slight blocky structure, well	СН					
134	406		indurated, slightly calcareous, saline, fresh.						
135— 135— 136— 137— 138— 138— 139— 139— 140—			Hard, Dark Greenish Gray to Greenish Gray with trace Dark Reddish Brown and Gray FAT CLAYSTONE(CH), trace white highly calcareous nodules, massive with slight	СН	CB-20 (131-141')			45,0%	
136 — 137 —		4	low angle and horizontal fractures with slickenslides, well indurated, slightly calcareous, slightly weathered.		(131-141') Rec=112"				
138—	402		Hard, Dark Gray to Gray with little Greenish Gray LEAN CLAYSTONE(CL), little silt, trace fine sand, trace calcareous nodules, dry, aphanitic to your fine grained, massive, well	CL					
139—	401		aphanitic to very fine grained, massive, well indurated, mildly to highly calcareous, saline, fresh.	OL.					
[140 -		ZZI.	(Continued on next page)			11 11))	0	'

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.)

REMARKS
6,25" Dia, Drag Bit(0-11');8,75"Dia, Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

SHEET 8 OF 8

SURFACE ELEVATION:

540

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

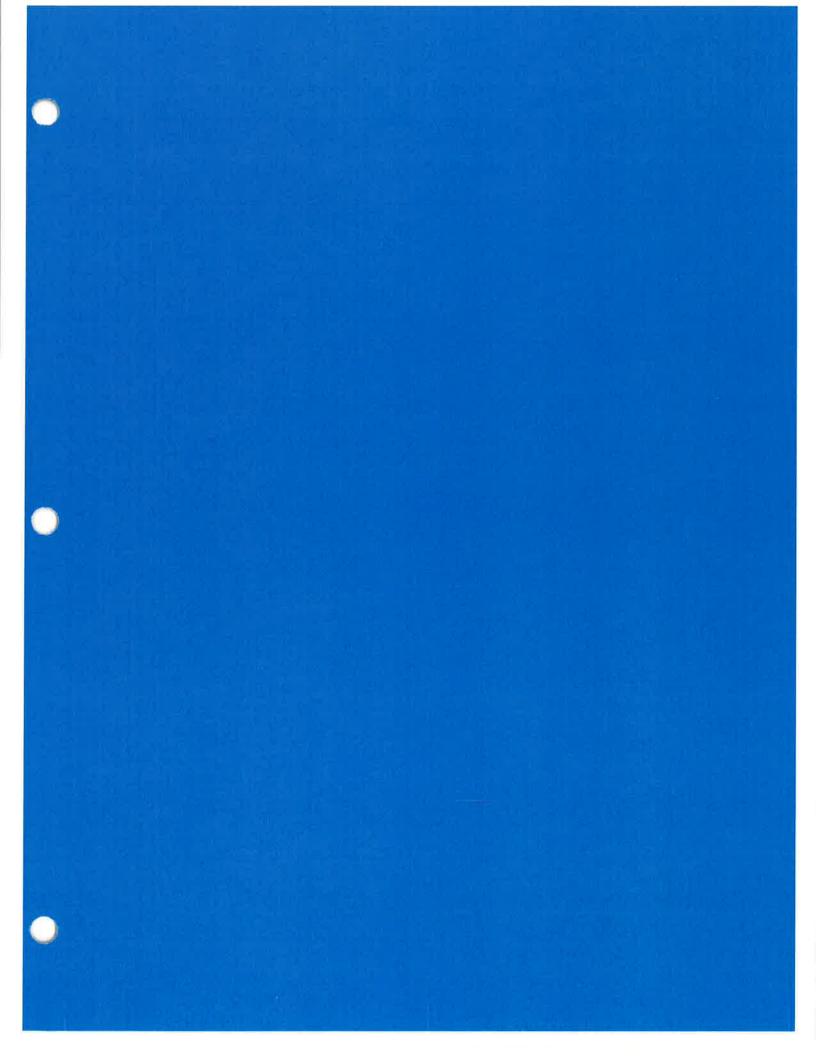
NORTHING: 17090901 EASTING:

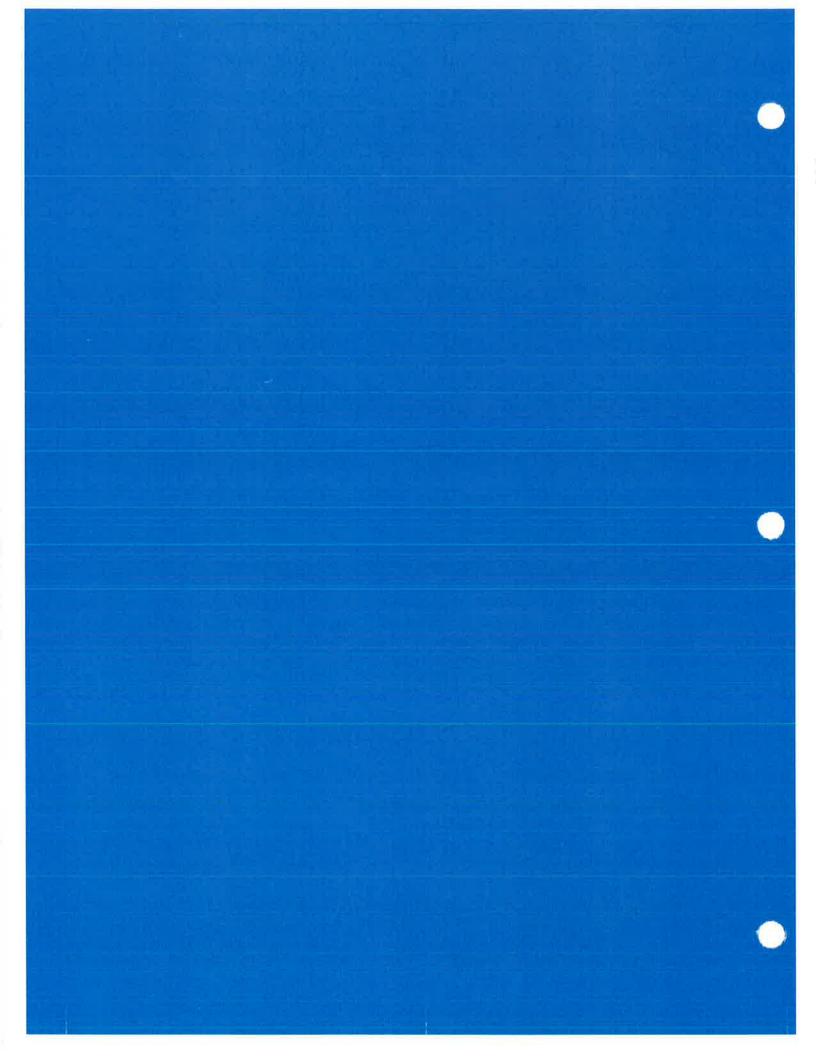
771370

PROJECT NO. 148866

BORING NO.

LOGGED BY: RWB


B-52


Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
140 — 141 —			(Continued from previous page) Same, LEAN CLAYSTONE(CL) with highly calcareous Light Gray limestone	CL	CB-20 (131-141') Rec=112"				
142 —	- 398		Concretions(140-140.6'). Hard to moderately hard, Reddish Brown, Light Reddish Brown, and Dark Reddish	J	1,00				
143- 144-			Gray with Greenish Gray FAT CLAYSTONE(CH), alternating thin to medium beds, trace white to light gray highly calcareous limestone, trace to little silt, trace	CH					
145-			fine sand, dry, aphanitic to very fine grained, moderately to well indurated, slightly calcareous, saline, slightly weathered, massive with little blocky						
146-	- 394		structure. Hard, Gray grading to Dark Gray with little Greenish Gray CLAYEY SANDSTONE(SC),		CB-21 (141-150') Rec=87.5"			54.16%	
147 <i>-</i>			dry, very fine grained, massive, well indurated, high calcareous, fresh.	sc					v 3*
149-			(149-150); little dark reddish brown.						
150 —	390	32	End of Boring @150'						
151 –	389								
152-	- 388								
153-	- 387								
154-	386								
155 —	385								
156-	384								
157 —	383								
158-	382								
159-	381								
160-			T	(n= : T					
			ACTOR: Andrews & Foster D: Air\Water Rotary WATER LEVE	EL (FT.)	REMARKS 6.25" Dia, Drag	Bit(0-11'):	8.75"Dia. Tr	icone Roller	Bit

07-08-2015 T:\Projects\2013\Pescadito Landfil\Boring Logs\B-52.bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air(Water Rotary
3"I.D.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

SHEET 1 OF 8

SURFACE ELEVATION: 548 NORTHING:

EASTING:

772808

PROJECT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

17095438

CLIENT: PROJECT NO.: 148866

BORING NO.

LOGGED BY: **RWB**

B-55

Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS	
0-	548	777	Brown FAT CLAY(CH), little silt and fine				4.75			
1-	- 547		sand, trace organics, stiff, high plasticity, moist, slightly calcareous and saline, massive.	СН	ST-1 (0-1.5') Rec=18"		1.75 2.5			
2-	- 546		Brown FAT CLAY(CH), little silt and fine		ST-2		2.0			
3-	- 545		sand, trace roots, very stiff, high plasticity, moist, highly calcareous and moderately saline, slight blocky structure.	СН	(1.5-3') Rec=14"		2.0			
4-	- 544				ST-3 (3-4.5') Rec=12"		2.75			
5-	- 543		Light Brown, little Pinkish Gray and Brown FAT CLAY(CH), little silt and sand, trace				3.5			
6-	- 542		yellowish brown iron staining, very stiff grading to hard, high plasticity, moist, moderately calcareous and saline, blocky.	СН	ST-4 (4.5-6') Rec=17"		4.5+			
7-	- 541		moderately calcareous and saime, blocky.		ST-5 (6-7.5') Rec=17"		4.5 +			
8-	- 540		Light Olive Brown with trace Pale Brown FAT CLAY(CH), little fine sand and silt, trace yellowish brown and black staining,		ST-6 (7.5-9') Rec=18"		4.5 +			
9-	- 539		hard, high plasticity, moist, moderately calcareous and saline(gypsum crystals).							
10-	- 538			CH	ST-7 (9-10.5') Rec=18"		4.5 +			
11-	- 537		(10.5-11');Trace reddish brown, very stiff.		-		2,25			
12-	- 536		(11-12');Blocky structure with trace laminations, trace medium to coarse sand and fine gravel.		ST-8 (10.5-12') Rec=18"	Į.	4.5+			
13-	- 535		Moderately hard to hard Light Brown to Brown with Light Gray FAT CLAYSTONE(CH), little fine sand and silt,							
14-	- 534		trace yellowish brown, strong brown and black staining in fissures, dry, aphanitic to very fine grained, blocky with trace thin							
15-	- 533		beds and laminations, moderately to well indurated, moderately calcareous and saline, slightly weathered.							
16-	- 532			СН	CB-9 (12-20') Rec=25"			0%		
17-	531				1.46-25					
18-	- 530									
19-	- 529									
20-			(Continued on next page)						e e	
			CTOR: Andrews & Foster : Air Rotary WATER LEVE	L (FT.)	REMARKS	Tub a/OT	\(\(\O_12\\\.12\\2	5" Die De-	Dir(0.200)	
DRILLI	NG EQU	JIPME	3"I.D.;4.875"O.D. Double Tube Core Barrel ENT: Gardner Denver 15W Truck Mounted Drill Rig]]]	3"x2'Long Shelby nstalled 8" PVC 3oring was tremi rom 0-142' on 2/	casing (0- e-grouted 5/15, Bori	17'); Core(12 with Quik-G ng had caved	2-153'). rout bentoni I-in/sealed	te/water	
DRILLING STARTED: 1/28/15 ENDED: 2/5/15 from (142-153') prior to placement of bentonite grout.										

-s/Norman_Frohling\Desktop\B-55.bor

SHEET 2 OF 8

SURFACE ELEVATION:

NORTHING.

EASTING:

548

17095438

772808

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO. 148866 LOGGED BY: **RWB**

BORING NO.

B-55

USCS/ Material Abbreviation UCS (tsf) Using Pocket Penetrometer Depth in Feet Count Surf. Sample Type & No. Depth (ft) Elev: Strata DESCRIPTION **REMARKS** Blow 548 Recovery (in) 20 528 (Continued from previous page) 527 Moderately hard to hard, stratified Pale Olive 21 to Olive to Grayish Brown to Gray FAT CLAYSTONE(CH), trace yellowish brown 526 22 and yellowish red staining, dry, aphanitic to very fine grained, blocky, moderately to well indurated, slightly to highly calcareous, 23 525 saline, slightly weathered. CH **CB-10** 0% (20-27') Rec=23" 24 - 524 523 25 522 26 27 - 521 Hard, Gray to Dark Gray with Greenish Gray FAT CLAYSTONE(CH), trace fine 28-- 520 sand and silt, trace yellowish brown and yellowish red staining, dry, aphanitic, blocky to slightly laminated, well indurated, - 519 29 moderately calcareous, saline, slightly CH **CB-11** weathered. 48.33% (27-32')518 30 Rec=47 - 517 32 - 516 (32-36'); Moisture Hard with thin beds of moderately hard, in boring after Greenish Gray with trace Gray FAT CLAYSTONE(CH), trace very dark gray lean 32-36' core run. - 515 claystone with brown saline material in partings and fissures, trace fine sand and - 514 **CB-12** silt, dry, aphanitic, blocky, well indurated, 27.08% (32-36')slightly calcareuos and saline, slightly Rec=46' weathered. 35 - 513 CH 36. - 512

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

Same, little fine sand.

Hard, Dark Greenish Gray SANDY LEAN

very fine grained, massive, (Continued)

CLAYSTONE(CL), little silt, dry, aphanitic to

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig DRILLING STARTED: 1/28/15 ENDED:

WATER LEVEL (FT.)

CL

REMARKS 3"x2'Long Shelby Tube(ST)(0-12');12,25" Dia. Drag Bit(0-20') Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water

35%

from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

CB-13 (36-41') Rec=56'

C:\Users\Norman_Frohling\Desktop\B-55.bor

06-2015

37--- 511

38

39

40

- 510

509

SHEET 3 OF 8

SURFACE ELEVATION: 548 NORTHING:

EASTING:

17095438

772808

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO.: 148866

BORING NO.

LOGGED BY: **RWB**

B-55

tion the second	
DESCRIPTION Sort: Elev. Elev. Type & No. Depth (ft) Docket Penetrometer RQD REMA REMA	IRKS
40 - 508 (Continued from previous page); SANDY	
LEAN CLAYSTONE(CL), well indurated, non calcareous, saline, fresh.	
42 — 506 Same, dark greenish gray with light	
greenish gray SANDY LEAN CLAYSTONE(CL).	
44—504	
45 — 503 CL CB-14 (41.49)	
46 — 502 (41-49') Rec=92" (34,37%	
47 — 501	
48 — 500	
49 - 499	
50 – 498 Moderately hard to hard, Dark Greenish	
51—497 Gray with Light Gray FAT CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, thinly to very thinly bedded CB-15 (49-52') Rec=34"	
with some laminations, well indurated, non calcareous, slightly saline, fresh.	
53 — 495	
Same, with trace to little silt, trace black staining in fissures.	
55—493 CH	
CB-16 (52-62') Rec=103"	
gg	
56 — 492 57 — 491 58 — 490 59 — 489 60 — (Continued on next page)	
59 — 489 — 59 — 489 — 59 — 489 — 59 — 59 — 59 — 59 — 59 — 59 — 59 —	
(Continued on next page) RILLING CONTRACTOR: Andrews & Foster WATER LEVEL (FT.) REMARKS	

07-06-2015 C

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"(.D., 4, 875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153').

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

SHEET 4 OF 8

SURFACE ELEVATION

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

EASTING:

NORTHING:

17095438 772808

PROJECT NO.: 148866 LOGGED BY: RWB

BORING NO.

B-55

1			23							D -33
Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTI	ON	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
60-	- 488	111	(Continued from previous pag	ge)	1	1				
61 —	- 487		Same, FAT CLAYSTONE(CH	H).		CB-16				
62-	- 486					(52-62') Rec=103"				
			Same, FAT CLAYSTONE(Ch	H)						
63-	- 485									
64-	- 484				СН					
65 —	- 483									
66-	- 482									
67	- 481					CD 47				
						CB-17 (62-72') Rec=106"			27.5%	
68-	480									
69 –	479		Moderately hard to hard, Dar	k Greenish		-				
70 –	- 478		Gray and Dark Reddish Gray CLAYSTONE(CH), trace fine	FAT sand and silt,						
71 —	477		dry, aphanitic, blocky, moder indurated, non calcareous, sa	ately to well aline, fresh.						
72-	- 476				CH					
73-	475									
74-	- 474									
75-	- 473									
			Moderately hard to hard, Dar Gray with trace Greenish Gra	ay FAT		0.5.40				
76-	472		CLAYSTONE(CH), trace fine dry, aphanitic, blocky, well in	esand and silt, durated, non	СН	CB-18 (72-82') Rec=91"			10%	
77 –	- 471		calcareous, saline.							
78-	470	#	Moderately hard to hard, Dus	sky Red to		-				
79-	469		Weak Red with little Greenisl CLAYSTONE(CH), trace fine	n Gray FAT	СН		,			
90			dry, aphanitic, blocky, moder indurated, slightly to moderate	ately to well tely calcareous,						
DRILL	ING CO	NTR A	saline, fresh. (Continued on a	next page) WATER LEVE	L (FT)	' REMARKS		1	,	
DRILL	ING ME	THO	CTOR: Andrews & Foster		 / [Olly Oll on a Shall-	u Tuba/ST	NO 120-12	S" Die Dee	- Di+(0.20%

07-06-2015 C:\Users\Norman.Frohling\Desktop\B-55.bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"I.D.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

3"x2'Long Shelby Tube(ST)(0-12'),12.25" Dia. Drag Bit(0-20') Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed

from (142-153') prior to placement of bentonite grout.

SHEET 5 OF 8

SURFACE ELEVATION:

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING:

17095438 772808

PROJECT NO 148866 BORING NO.

LOGGED BY: **RWB**

B-55

			·						,
Depth in Feet	Surf, Elev, 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
80-	- 468	111	(Continued from previous page)						
81-	- 467		Same, FAT CLAYSTONE(CH)		CB-18				
82-	- 466				(72-82') Rec=91"				
0									
83-	- 465		Same, with trace pale red.						
84-	- 464								
85 -	- 463								
86-	- 462								
87_	- 461			СН	CB-19				
					(82-92') Rec=91"			0%	
88-	- 460								
89-	459								
90-	- 458								
91-	- 457								
92-	456								
93-	455								
94-	454		Moderately hard to hard, Greenish Gray with little Light Gray SANDY LEAN						
95-	453		CLAYSTONE(CL), dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, saline, fresh.	CL	CB-20 (92-98')			0%	
96-	452		Moderately hard, Greenish Gray with little		Rec=69"			• 70	
			Light Gray SILTY SANDSTONE(SM), little clay, moist, fine grained to very fine	SM					
97-	451		grained, massive, moderately indurated, slightly calcareous, saline, fresh.	SC					
96- 97- 98- 99-	450		Moderately hard, Greenish Gray with little Light Gray CLAYEY SANDSTONE(SC), little						
99-	449		silt, moist, fine grained to very fine grained, massive, moderately indurated, slightly	sc	CB-21 (98-102')			0%	
100-		1	calcareous, saline, fresh. CLAYEY SANDSTONE(SC) (Cont'd)		Rec=16"		ļ. ,		
BILL	ING CO	VITR A	CTOR: Andrews & Foster WATER LEVE	(FT) I	REMARKS				

rs\Norman.Frohling\Desktop\B-55.bor

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

SHEET 6 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

548

17095438

772808

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO.: 148866

BORING NO.

LOGGED BY: RWB

B-55

									200
Depth in Feet	Surf, Elev, 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
100-	448	:33	(Continued from previous page)(97.7-101');	sc					
101-	447		Moderately hard, Greenish Gray with little Light Gray CLAYEY SANDSTONE(SC), little silt, moist, aphanitic to very fine grained,	CH	CB-21 (98-102') Rec=16"				
102-	446		blocky, moderately indurated, slightly calcareous, saline, fresh.	/	1,66-10				
103-	445		Hard, Dark Greenish Gray with trace Light Gray FAT CLAYSTONE(CH), trace slickenslides, dry, aphanitic, blocky with						
104-	444		trace laminations, well indurated, slightly calcareous, saline, fresh.			3 3			
105-	443		(101.5-103.5'); Hard, Dark Reddish Brown FAT CLAYSTONE(CH), trace slickenslides, dry, aphanitic, blocky with trace laminations,						
106-	442		well indurated, moderately calcareous, saline, fresh.						
107-	441		(103.5-127.7'); Hard, Dark Reddish Brown with Reddish Brown and Light Reddish		CB-22 (102-112') Rec=105"			10%	
108-	440		Brown and trace Greenish Gray FAT CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, massive with some blocky		Rec=105"				=
109-	439		structure, thin beds and laminations, well indurated, moderately to highly calcareous, saline, fresh.						
110-	438		odino, 110011.						
111-	437			CH					
112-	436								
113-	435								
114-	434			1	CB-23				
115-	433				(112-117') Rec=52"			0%	
116-	432								
117-	431								
118~	430				CB-24				
119-	429				(117-127') Rec=82"				
120-		///	(Continued on next page)	<u> </u>]				(
DRILL	ING CO	NTRA	CTOR: Andrews & Foster WATER LEVE	L (FT.)	REMARKS				1

07-06-2015 C:\Users\Norman.Frohling\Desktop\B-55.bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

SHEET 7 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

548 17095438

772808

PROJECT:

Pescadito Environmental Resource Center

Rancho Viejo Waste Management, LLC CLIENT: PROJECT NO. 148866

BORING NO.

LOGGED BY:

	Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
	120 —	- 428	111	(Continued from previous page)					6	i i
	121 –	- 427		Same, FAT CLAYSTONE(CH)						
	122 —	- 426								
	123 —	- 425				CB-24				
	124 –	- 424			СН	(117-127') Rec=82"			0%	
	125	- 423								
	126-	- 422								
	127-	_ 421								
Ò)							3.5		
1	128	- 420		Brown FAT CLAY(CH), trace fine sand and silt, very stiff, high plasticity, dry highly	0.11	CB-25 (127-129') Rec=18"		0.0	0%	
	129-	- 419		calcareous, slightly saline, massive. Hard, Dark Greenish Gray with little Light		TVEC-10				
1	130	- 418		Greenish Gray FAT CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, massive						
	131	- 417		with trace thin beds and laminations, well indurated, moderately calcareous, saline,	СН					
				fresh. (130.5-131.2');Dark Reddish Brown with						
	132			trace Dark Greenish Gray.						
	133	- 415								
	134	- 414		Hard, Dark Reddish Brown with Reddish Gray and Pinkish Gray with trace Greenish		CB-26 (129-139')			6.66%	
	135	- 413		Gray FAT CLAYSTONE(CH), dry, aphanitic, massive with slight blocky structure and some thin beds and laminations, well		`Rec=95"				
pod	136	- 412		indurated, moderately calcareous, slightly saline, fresh.	СН					
p/B-55				Samile, 7, 251.11						
Deskto	137									
rs\Norman,Frohling\Desktop\B-55.bor	138	- 410		Hard, Dark Reddish Gray with little Greenish Gray FAT CLAYSTONE(CH), trace	СН				4	
man F	139	- 409		slickenslides, dry, aphanitic, blocky, well \indurated, slightly calcareous, saline, fresh.		CP 27				
NS!No	140-			FAT CLAYSTONE(CH). (Continued)	СН	CB-27 (139-149') Rec=110"	J			
	RILLI	NG CON	JTRA	CTOR: Andrews & Foster WATER LEVE	(FT) F					

07-06-2015

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary
3"I.D.;4.875"O.D.
Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153').

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

SHEET 8 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

548

17095438

772808

PROJECT:

Pescadito Environmental Resource Center

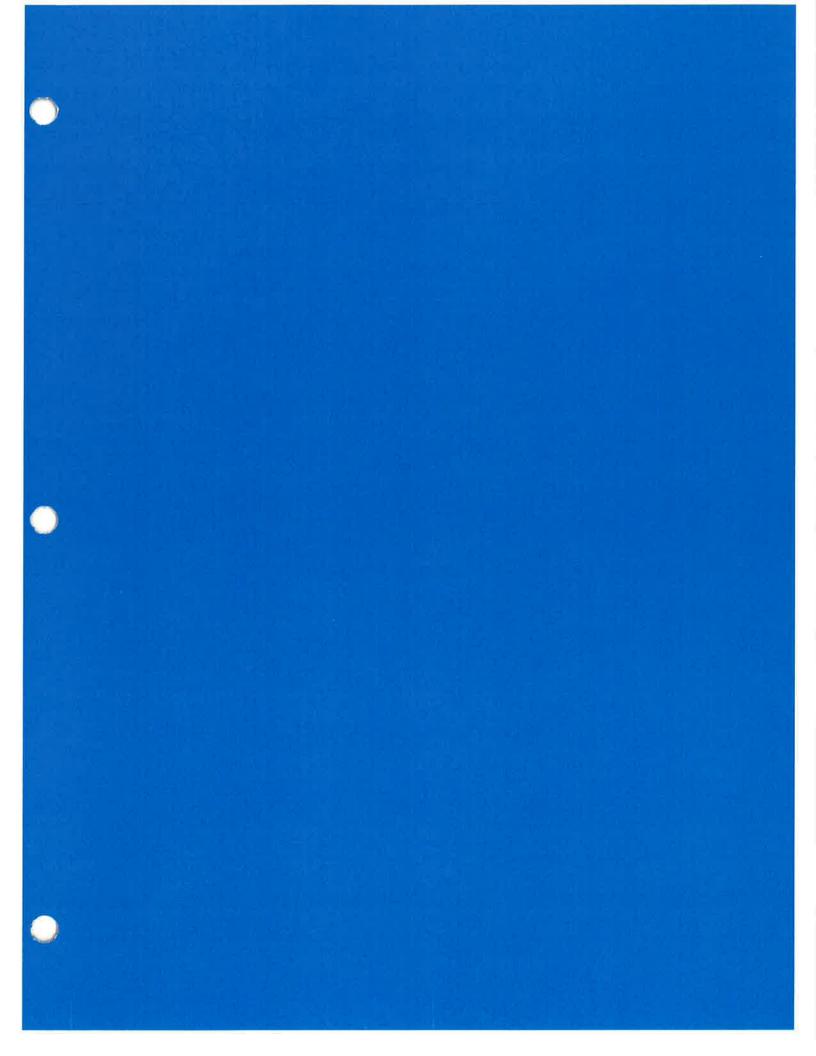
CLIENT:

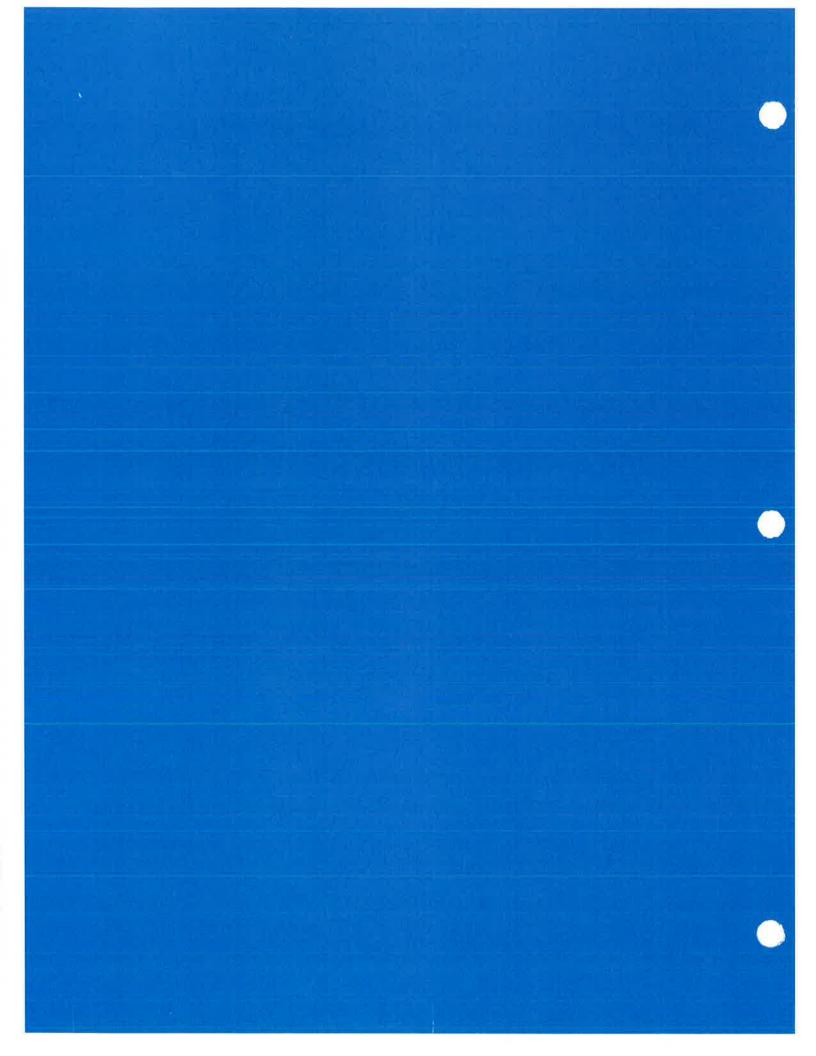
Rancho Viejo Waste Management, LLC

PROJECT NO. 148866

BORING NO.

LOGGED BY: RWB


Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
140 —	- 408	111	(Continued from previous page)(139.3-143')	1	1	1			
141 —	- 407		Hard, Dark Reddish Brown with little Greenish Gray FAT CLAYSTONE(CH), trace slickenslides, trace light brownish gray	СН					
142 —	- 406		limestone nodules, dry, aphanitic, blocky, well indurated, slightly to moderately calcareous, saline.						
143-	- 405	2//	Hard, Weak Red with little Pale Red and		1				
144-	- 404		trace Greenish Gray LEAN CLAYSTONE(CL), trace fine sand and silt, dry, aphanitic, massive with slight blocky		CB-27		e e		
145—	- 403		structure with trace thin beds and laminations, well indurated, moderately calcareous, saline, fresh.	CL	(139-149') Rec=110"			0%	
146—									
147 —			Hard, Dark Reddish Brown with trace Greenish Gray FAT CLAYSTONE(CH), trace						
148 <i>-</i> 149 <i>-</i>			slickenslides, dry, aphanitic, massive with slight blocky structure and trace thin beds and laminations, well indurated, moderately to highly calcareous, saline, fresh.						
150 —	- 398		Same, moderately hard to hard, moderately to well indurated.	СН					
151 —	- 397				CB-28 (149-153')			0%	
152-	- 396		(152-153');Some gray and pinkish gray.		`Rec=48"'				JI
153-	395		End of Boring @153'						
154-	- 394								
155-	- 393								
156-	392								
157 —	- 391								
158-	390								
159-	389						::		
160 -	ING CO	NITD A	CTOD: Andrews & Feater W/A TCD 1 DVC	I (PT)	DEMARKS				
DRILL	ING CO	NTKA THOF	CTOR: Andrews & Foster D: Air Rotary WATER LEVE	レ(ヒ ト) .	REMARKS	v Tube/ST	``\(D_12'\·12'2	5" Dia Dra	g Bit(0-20')


07-06-2015 C:\Users\Norman,Frohling\Desktop\B-55_bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"LD.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

3"x2"Long Shelby Tube(ST)(0-12');12.25" Dia Drag Bit(0-20') Installed 8" PVC casing (0-17'); Core(12-153').

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

SHEET 1 OF 8

SURFACE ELEVATION:

558

NORTHING:

EASTING:

17098900 772960

PROJECT:

LOGGED BY:

Pescadito Environmental Resource Center

CLIENT: Rancho Viejo Waste Management, LLC

RWB

PROJECT NO.: 148866

BORING NO.

B-58

A			A
	¥.	2	
	4		

									D 30
Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
	558 557		Dark Brown FAT ORGANIC CLAY(OH), little fine sand, very stiff, high plasticity, moist, highly calcareous, saline, massive with slight blocky structure.	ОН	ST-1 (0-1.5') Rec=18"		3,5		
	556 555		Reddish Brown FAT CLAY(CH), little fine sand, very stiff, high plasticity, moist, moderately to highly calcareous, saline,		ST-2 (1.5-3') Rec=14"		3.0		
4-	554		massive.		ST-3 (3-4.5') Rec=12"		2.5		
	- 553 - 552		Stiff.	СН	ST-4 (4.5-6') Rec=17"		1.25		
	- 551		Very stiff.	1	ST-5 (6-7.5') Rec=17"		3.0		
1 8-	- 550		Stiff. Pale Olive with little Grayish Brown and		ST-6		1.5 2.25		ı
	- 549 - 548		Reddish Brown FAT CLÁY(CH), trace strong brown staining, little fine sand, very stiff grading to hard, high plasticity, dry to moist, slightly calcareous, saline, blocky.	СН	(7.5-9') Rec=18" ST-7 (9-10.5') Rec=18"		4.5 +		
	- 547 - 546				ST-8 (10.5-12') Rec=18"		4.5+		
	- 545		Moderately hard to hard, Grayish Brown FAT CLAYSTONE(CH), dry, aphanitic, blocky with some thin beds, moderately to well indurated, slightly calcareous, saline,	СН					
54,51	- 544 - 543		slightly weathered, Moderately hard to hard, Reddish Brown FAT CLAYSTONE(CH), trace yellowish brown staining, dry, aphanitic, blocky with		CB-9 (12-17') Rec=17"			0%	
16-	- 542		some thin beds, moderately calcareous, saline, slightly weathered.						
	- 541			СН					
	- 540 - 539		Same, with reddish gray and weak red.		CB-10 (17-22') Rec=23"			10%	
20-	(Continued on next page)								
KILL	NO CON	IIRA(CTOR: Andrews & Foster WATER LEVEL	_(L'L,) L	CEMARKS				

-s/Norman, Frohling\Desktop\B-58.bor

07-06-2015 C

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"I.D.;4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

SHEET 2 OF 8

SURFACE ELEVATION:

558

PROJECT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING:

772960

17098900 CLIENT:

PROJECT NO.: 148866

BORING NO

LOGGED BY: RWB

B-58

-									
Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
20-	- 538	111	(Continued from previous page)		i	9	7		
21-	- 537		Same, FAT CLAYSTONE(CH).	СН	CB-10 (17-22') Rec=23"			,	
22-	- 536				Rec=23"				
	- 535 - 534		Soft to moderately hard, Olive with Pale Olive and trace Yellowish Brown FAT CLAYSTONE(CH), moist to wet, aphanitic, blocky with some thin beds and laminations,						
	- 533		moderately indurated, slightly calcareous, saline, slightly weathered.	СН	CB-11 (22-27') Rec=28"			16.66%	
26-	- 532								
27-			Moderately hard, Brown with Pale Brown and Very Pale Brown FAT						
29- 30-	- 530 - 529 - 528 - 527		CLAYSTONE(CH), trace reddish brown, strong brown and black staining in partings, trace low angle slickenslides, moist(27-30.5'), dry(30.5-32'), little fine sand, aphanitic to very fine grained, massive with slight blocky structure, moderately indurated, slightly calcareous, saline, slightly weathered.	СН	CB-12 (27-32') Rec=58"			57.5%	
32-	- 526		Brown FAT CLAY(CH), trace fine sand,	СН					
33-	525		hard, high plasticity, moist, slightly calcareous, saline, slightly weathered.						
	- 524		Moderately hard to hard(32.3-34'), soft to moderately hard(34-40'), Brown with Pale Brown and little Olive FAT CLAYSTONE(CH), little fine sand, trace						
	- 523		yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well		05.40				
36-	- 522 - 521		indurated, slightly calcareous, slightly weathered.	СН	CB-13 (32-40') Rec=33"			12.5%	
	520								
39-	- 519								
40-			(Continued on next page)						
DRILL	ING CO	NTRA	CTOR: Andrews & Foster WATER LEVE	L (FT) 1	REMARKS				X

07-06-2015 C:\Users\Norman Frohling\Desktop\B-58.bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W Truck Mounted Drill Rig DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150').
Piezometer P-58D was installed into the boring to 148'

upon the completion of drilling activities.

SHEET 3 OF 8

SURFACE ELEVATION:

558

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING: 17098900 772960

148866 PROJECT NO.

BORING NO.

LOGGED BY: RWB

B-58

Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
40-	518	111	(Continued from previous page)	<u>'</u>					
41-	- 517		Same, moderately hard to hard, FAT CLAYSTONE(CH).	СН					
West .	- 516 - 515		Hard, Greenish Gray with little Light Greenish Gray FAT CLAYSTONE(CH), trace fine sand, dry, aphanitic, massive, well indurated, highly calcareous grading to slightly calcareous, slightly saline, fresh.		CB-14 (40-45') Rec=39"			0%	
5.4100	- 514 - 513		slightly calcareous, slightly saille, fresh.	OL.					
46-	- 512		Trace yellowish red and black staining in partings and fissures, slightly calcareous,	СН		l			
	511		slightly weathered.						
49 —	- 510 - 509 - 508		Hard, Dark Gray with little Gray and trace Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, massive with slight blocky structure, well indurated, highly calcareous, saline, fresh.		CB-15 (45-53') Rec=74.5"			21.87%	
	507 506		Saille, Itesii.	611					
53-	505			СН					
	504		Little to some greenish gray, trace slickenslides.						
	503								l
	- 502 - 501		Hard, Dark Gray with Greenish Gray and little Dark Greenish Gray FAT CLAYSTONE(CH), often stratified, trace fine sand, dry, aphanitic, massive with some		CB-16 (53-63') Rec=106"			85.83%	
	- 500 - 499		thin bedding and laminations, well indurated, moderately to highly calcareous, saline, fresh.	СН					
60-			(Continued on next page) CTOR: Andrews & Foster WATER LEVE			X.	x	71	a .

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"1.D;4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

SHEET 4 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

558

17098900

772960

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

LOGGED BY: RWB

PROJECT NO.: 148866

BORING NO.

B-58

Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
60-	- 498	1//	(Continued from previous page)	1				1	
61-	- 497		Same, FAT CLAYSTONE(CH).		CB-16				
62-	- 496				(53-63') Rec=106"				
63-	495			СН					
64-	- 494					5		<u>.</u>	
65⊸									
66 67 			Hard, Greenish Gray with Dark Gray, Gray and Light Gray FAT CLAYSTONE(CH),						
68-			stratified, trace fine sand, dry, aphanitic, massive with some thin beds and laminations, well indurated, slightly to highly		CB-17			5	2
69	- 489		calcareous, saline, fresh.		(63-73') Rec=110"			62.92%	
70 -	- 488			СН					
71	- 487								
72-	- 486								
73-	- 485		Hard, Dark Gray with Gray and Light Gray						
74-	- 484		with trace Greenish Gray LEAN CLAYSTONE(CL), trace to little fine sand, dry, aphanitic to very fine grained, massive,						
75⊸	- 483		well indurated, highly calcareous, saline, fresh.	CL					
76⊸	- 482				CB-18				
77	- 481				(73-83') Rec=103"			67.5%	
78 <i>-</i> -	- 480		Hard, Dark Greenish Gray with Greenish Gray and Light Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, massive,						
79⊸	479		well indurated, highly calcareous, saline, fresh.	CH					
80		///	(79-80');Trace black lignite. (Continued)	l ,	ļ	ļ	ļ	,	

C:\Users\Norman.Frohling\Desktop\B-58.bor 07-06-2015

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary
3"L.D.;4,875"O.D.
Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12,25" Dia Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

SHEET 5 OF 8

SURFACE ELEVATION:

558

PROJECT: CLIENT:

Pescadito Environmental Resource Center

NORTHING:

17098900

Rancho Viejo Waste Management, LLC

BORING NO.

B-58

EASTING:	772960	PROJECT NO.	148866
		LOGGED BY:	RWB

	r			r					
Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
80 -	- 478	111	(Continued from previous page)		ľ		ľ		
81-	- 477		Same, FAT CLAYSTONE(CH).	СН					
82-		2//	Hard, Dark Greenish Gray with Greenish Gray and Dark Gray LEAN CLAYSTONE(CL), trace dark yellowish	CL	CB-18 (73-83') Rec=103"				
83-	- 475		brown staining in fissures, dry, aphanitic to very fine grained, slight brecciation, well						
84-	- 474		indurated, slightly calcareous, slightly to moderately weathered, saline.				l l		
85 -			Hard, Dark Greenish Gray with Greenish Gray, Light Greenish Gray and little Dark Gray to Gray FAT CLAYSTONE(CH), trace fine sand, dry, well indurated, aphanitic, slightly calcareous, saline, slightly		CB-19 (83-87') Rec=46.5"			72.92%	
	477.4		weathered.						
87-	- 4/1		Trace slickenslides.						
88	- 470								
89				СН					
90	468								
91	- 467				CB-20			67.18%	
92	466				(87-95') Rec=93.5"			01.1070	
93	465								
94	464								
95	463		Hard, Dark Gray with Gray CLAYEY						
96	462		SANDSTONE(SC), dry, very fine grained to fine grained, well indurated, non calcareous, saline, massive, fresh.	sc					
97	461				CB 04				
98	460		Hard, Dark Gray FAT CLAYSTONE(CH), dry, aphanitic, massive, well indurated,		CB-21 (95-105') Rec=91.5"			27.08%	
99	459		highly calcareous, saline, fresh.	СН					
100-			(Continued on next page)				8	,	
SILTIN	IG CON	TRAC	CTOR: Andrews & Foster WATER LEVEL	(FT) R	FMARKS				

RILLING CONTRACTOR: Andrews & Foster RILLING METHOD: Air Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150').
Piezometer P-58D was installed into the boring to 148'

upon the completion of drilling activities.

rs\Norman.Frohling\Desktop\B-58.bor

SHEET 6 OF 8

SURFACE ELEVATION:

558

PROJECT:

Pescadito Environmental Resource Center

NORTHING: EASTING:

17098900 772960

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO. 148866

BORING NO.

LOGGED BY: RWB

B-58

	-								
Depth in Feet	Surf Elev 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
100-	- 458	111	(Continued from previous page)	Î	i			1	
101-	- 457		Same, FAT CLAYSTONE(CH).			41			
102-	- 456				CB-21				
103-	- 455			СН	(95-105') Rec=91.5"				
104-	- 454								
105—	- 453		(@105.6');45 degree slickenslides						
106	- 452		(106.6-106.7');Very dark gray.						
107	- 451		Hard, Greenish Gray LEAN CLAYSTONE(CL), trace fine sand, dry						
108	- 450		aphanitic, massive, well indurated, non calcareous, saline, fresh.	CL	CB-22 (105-111') Rec=61"			50%	
109	- 449				Rec=61				
110-			Very hard, Gray LEAN CLAYSTONE(CL), little silt, trace fine sand, dry, very fine grained to aphanitic, massive, well	CL					
111-	447		indurated, non calcareous, saline, fresh. Hard, Greenish Gray to Dark Greenish Gray	_					NV.
112	446		with Light Greenish Gray and trace Dark Gray FAT CLAYSTONE(CH), dry, aphanitic, massive, well indurated, non calcareous,						
113	445		saline, fresh.	СН	CB-23 (111-115') Rec=39 5"			47.92%	
114-	- 444								
115	443		Moderately hard, Dark Reddish Gray with trace Greenish Gray FAT CLAYSTONE(CH),						
116	442		dry, aphanitic, blocky with trace slickenslides, moderately indurated, slightly						
117-	441		calcareous, saline, slightly weathered.	СН	CB-24			E 00/	
118	440				(115-125') Rec=48"			5.8%	
119	439								
120-		1//	(Continued on next page)	ļ	I I	ļ		,	
DRILLI	VG CON	TRAC	CTOR: Andrews & Foster WATER LEVE	L(FT.)	REMARKS				

07-06-2015 C:N

Norman.Frohling\Desktop\B-58.bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"I.D.,4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150').
Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

SHEET 7 OF 8

SURFACE ELEVATION:

NORTHING:

EASTING:

17098900

772960

558

PROJECT:

Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO. 148866 **BORING NO**

LOGGED BY: **RWB**

B-58

Depth in Feet	Surf Elev 558	Strata	DESCRIPT	TION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	ROD	REMARKS
120 —	- 438	111	(Continued from previous pa	age)	Î	I				
121 —	- 437		Same, FAT CLAYSTONE(C	H).	СН					
122 —	- 436		Moderately hard, Dark Redo			CB-24				
123-			little Reddish Brown, Light R and little Greenish Gray FAT CLAYSTONE(CH), dry, aph to blocky with trace slickens	anitic, massive		(115-125') Rec=48"				
124-			moderately indurated, highly slightly weathered.	calcareous,						
125 —			(124-125');Hard, well indura	ted, massive.						
126 — 127 —			Moderately hard to hard, Da Brown with Reddish Brown, Brown, Dark Reddish Gray a	Light Reddish						143
78-			Greenish Gray FAT CLAYS aphanitic, massive to blocky slickenslides, moderately to highly calcareous, saline, sli	FONE(CH), dry, with trace well indurated,	СН					
129			weathered.	5·····)		00.05				
131						CB-25 (125-135') Rec=73"			10.83%	
1										
132							1			
133	425									
134	424								i	
135	423		Hard, Reddish Brown with Li	aht Reddish						
136	422		Brown and trace to little Gree CLAYSTONE(CH), trace fine	enish Gray FAT sand, dry,						
137	421		aphanitic, massive with sligh structure, well indurated, mod calcareous, saline, slightly w	derately	CL	CB-26			_	
138	420	111	Hard, Greenish Gray with Lig			(135-145') Rec=94.5"			37_92%	
139	419		Gray and little Reddish Brow Gray FAT CLAYSTONE(CH) massive with slight blocky str beds and laminations, (Conti	, dry, aphanitic, ucture, thin	СН					

07-06-2015 C:\Users\Norman,Frohling\Desktop\B-58,bor

DRILLING CONTRACTOR: Andrews C.
LLING METHOD: Air Rotary
3"LD.;4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig

3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40') Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

SHEET 8 OF 8

SURFACE ELEVATION:

558

PROJECT:

Pescadito Environmental Resource Center

upon the completion of drilling activities.

NORTHING: EASTING: 17098900 772960

CLIENT: PROJECT NO.:

Rancho Viejo Waste Management, LLC 148866

LOGGED BY: RWB BORING NO.

L					4					
Depth in Feet	Surf. Elev. 558	Strata	DESCRIPT	TON	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
140-	- 418	11/	(Continued from previous pa	ige)	1			ľ	l	
141 —	, i		(Cont'd) FAT CLAYSTONE(indurated, moderately calcal slightly weathered.	CH), well reous, saline,						
142	- 416		ong, wooda.or.co.		СН	OD 26				
143-	- 415				CH	CB-26 (135-145') Rec=94.5"				
144	- 414									
145	- 413		Hard, Reddish Brown with tr	ace to little						
146—	- 412		Greenish Gray FAT CLAYS aphanitic, massive, well inducalcareous, saline, fresh.	ΓΟΝΕ(CH), drv.						
147	- 411				СН	CD 07				p. 15.
148	- 410				Ch	CB-27 (145-150') Rec=57"			70.83%	
149	409									
150	- 408		End of Boring @150'							
151	- 407									
152-	- 406									
153	- 405									
154-	- 404									
155	- 403									
156-	402									
157	401									
158	400									
159-	399									
160-										
			CTOR: Andrews & Foster : Air Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel NT: Gardner Denver 15W	WATER LEVEL	`	REMARKS 3'x2'Long Shelby Installed 8" PVC Piezometer P-58D	casing (0-	40'); Core(12	2-150').	

07-06-2015 C:\Users\Norman.Frohling\Desktop\B-58.bor

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

III-E.5-C Photographs

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 1

Description: Double Tube Core Barrel

Photograph No. 2

Description:

Drill Bit

1

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 3

Description:

B-52

53' to 60'

Photograph No. 4

Description:

B-52

60' to 70'

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 5

Description:

B-52

90' to 100'

Photograph No. 6

Description:

B-52

141' to 150'

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 7 **Description:** B-55 27' to 32' Photograph No. 8 **Description:** B-55 36' to 41'

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 9

Description:

B-55

102' to 112'

Photograph No. 10

Description:

B-55

129' to 139'

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 11

Description:

B-58

27' to 32'

Photograph No. 12

Description:

B-58

53' to 63'

6

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 13

Description:

B-58

63' to 73'

Photograph No. 14

Description:

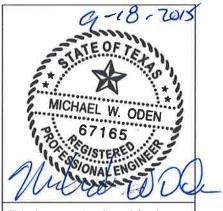
B-58

111' to 115'

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 15

Description:


B-58

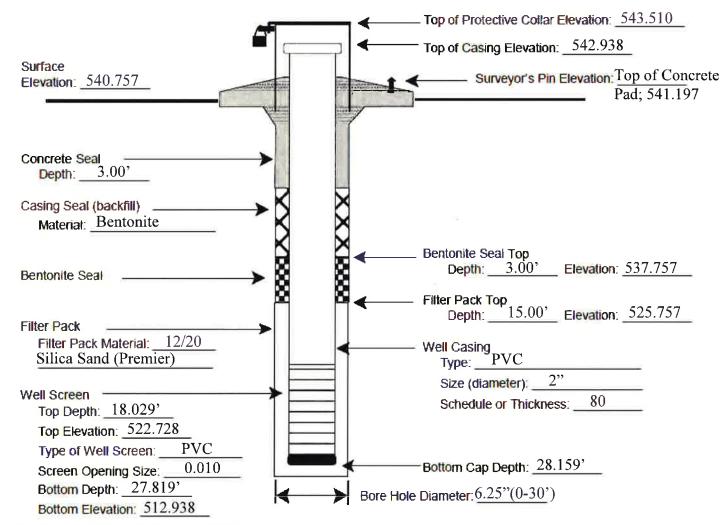
145' to 150'

8

III-E.5-D Piezometer Data Sheets

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

TOFO


Piezometer Data Sheet

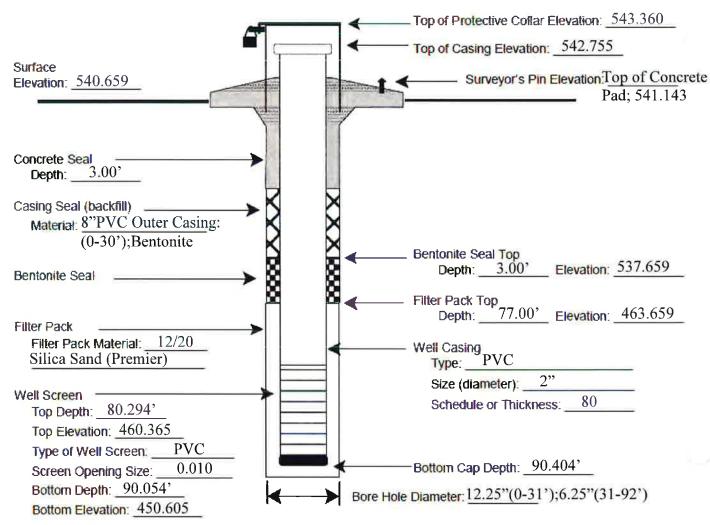
Texas Commission on Environmental Quality Waste Permits Division

Permittee or Site Name: <u>Pescadito Environmental Resource</u>	MSW Permit No.:23/4
Center	Piezometer I.D. No.: P-52S
County: Webb	Date of Development: NA
Date of Piezometer Installation:1/25/15	Driller
Piezometer Latitude: N:17090899.039 Longitude: E:771382.827	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.: 3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t:531.308
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: <u>Nut/Bolt</u> Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: <u>4' x 4</u>	' x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

T(FG


Piezometer Data Sheet

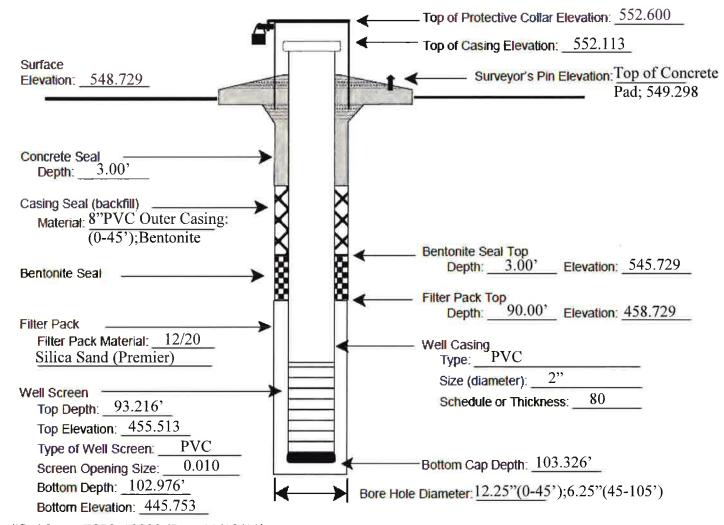
Texas Commission on Environmental Quality Waste Permits Division

Permittee of Site Name: <u>Pescaulto Environmental Resource</u>	MSW Permit No.:2374
<u>Center</u>	Piezometer I.D. No.: P-52D
County: Webb	Date of Development: NA
Date of Piezometer Installation:1/27/15	Driller
Piezometer Latitude: N:17090899.250 Longitude: E:771364.129	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.:3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: 531.465
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: Nut/Bolt Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	Y x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

TCEG

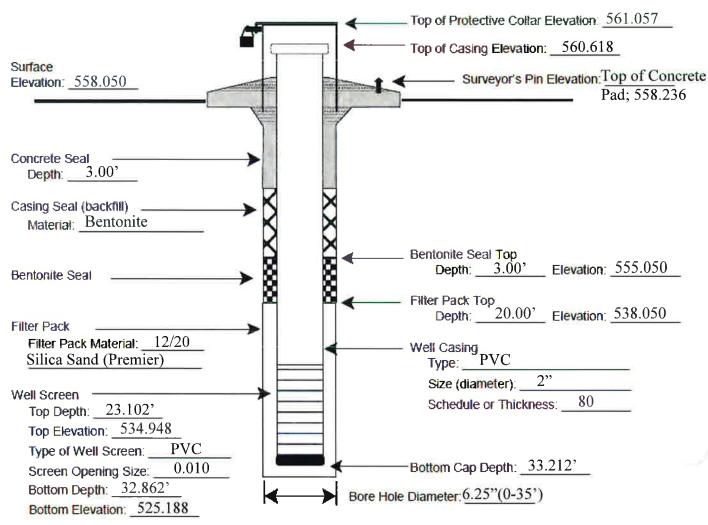

Piezometer Data Sheet

Texas Commission on Environmental Quality Waste Permits Division

Permittee or Site Name: Pescadito Environmental Resource	MSW Permit No.:2374
Center	Piezometer I.D. No.: P-55D
County: Webb	Date of Development:NA
Date of Piezometer Installation: <u>2/6/15</u>	Driller
Piezometer Latitude: N:17095437.396 Longitude: E:772808.836	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.:3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: <u>541.833</u>
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: Nut/Bolt Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	Y x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).


Piezometer Data Sheet

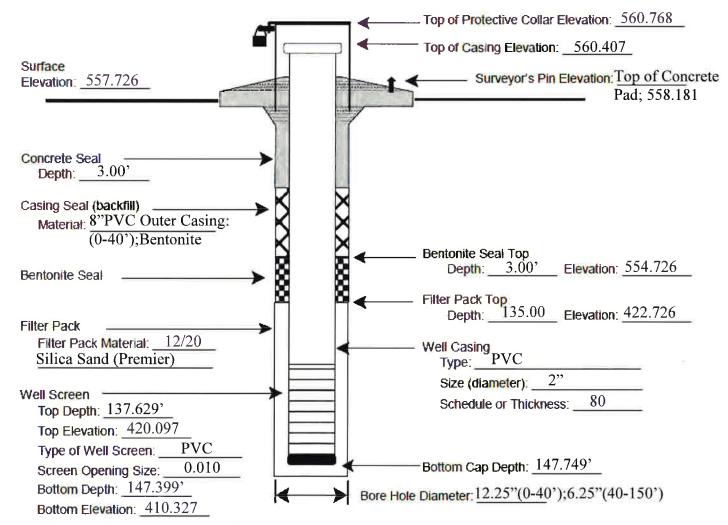
Texas Commission on Environmental Quality Waste Permits Division

Permittee or Site Name: Pescadito Environmental Resource	MSW Permit No.: 2374
<u>Center</u>	Piezometer I.D. No.: P-58S
County: Webb	Date of Development:NA
Date of Piezometer Installation: 2/11/15	Driller
Piezometer Latitude: N:17098904.202 Longitude: E:772957.408	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.: 3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Raiph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: <u>535.238</u>
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: Nut/Bolt Type of Casin	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	' x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

TCFO


Piezometer Data Sheet

Texas Commission on Environmental Quality Waste Permits Division


Permittee or Site Name: Pescadito Environmental Resource	MSW Permit No.:
<u>Center</u>	Piezometer I.D. No.: P-58D
County: Webb	Date of Development:NA
Date of Piezometer Installation: 2/12/15	Driller
Piezometer Latitude: N:17098878.889 Longitude:772970.399	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.:3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: 441.847
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: <u>Nut/Bolt</u> Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	' x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

III-E.5-E TDLR Well Reports

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy

Texas Department of Licensing and Regulation
Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
Email address: water.well@license.state.tx.us Web address: www.tdlr.texas.gov

This form must be completed and filed with the department and owner within 60 days upon

OI OWNER 5 55	·FJ :La			W	ELL REPO	ORT			comple	tion of	the wel	l.				
4.742°		A. V	VELL I	DENTIFI	CATION A	ND LOC	ATION	DATA		i v		1				
Arrive TV						City:				ACT 200 COMPANY		6) (i)				
JO WASTE	MNG.		LLE D	EL NOR	TE		LAR	EDO		<u>x</u>	7840	-				
		ter t	s e = =			100			St	ate:	Zio:					
Total Marchine		Physical A	ddress:	romerst a 10 f	06			EDO				L				
				IENARI	Long 99 1	56985	L/AIN									
		45 m	1 TT-	0 (ahaak)	M Mariton I	T Engiron	mental Soi	Boring Dome	estic 🗆 I	ndustri	al 🔲	Frac				
☐ Recondi	tioning ng	[Irrigati	on \square In	jection 🔲	Contraction Title	la untarina	Teet	well Rio Supply	I I Sto	CK OF L	ivestoc	K				
		Other_	-			i Public Sui	DIV II .	rubiic ouppry, were	pians appr	01001						
5) Drining Date						7) Drilli	ng ivietr	iod (check) Li Dri	IVER LANGE		oliourst	em Auger				
1.00	-C-700 TO SO TO	The second name of the second na							ıı 🗀 Jelle	. L.	OHOW SE	our verber				
-		6-1/4	-		30			- Charles and the same of the	men Hole		Straight	Wall				
ntical wells dr	illed					8) Bore	TOIG CO	M Gilter Packed □	•	ш.	21141 <u>0</u> 414					
<u> </u>	T	<u></u>		- f for a second	ion motorial					(20 Ty	pe					
	Descri	ption and	a color	oi tormat	ion material	9) Casi	ng. Blar	k Pipe, and We	Il Screen	n Dat	a	V 5				
						3,000	New	Steel, Plastic, etc.		Settin	g (ft)	Gage				
30	KED	JUNI				Día.	Or	Perf., Slotted, etc		_	_	Casing				
						(in.)	Used					Screen				
						2	N	PVC SCH 80		18	- 44					
						2	N			28	18	0.010"				
	R52-S					-										
	132-0										_					
						100 1		-1 Detroit of	0.0 10.100	A 15 a	aska of c	ement)				
						10) An	nuiar So	2 sacks of CEME	On to 100 ENT	II. <u>12</u> 8	BOKS OF Z	ÇitiÇiti)				
						1 from: 17	ft. to: 10f	t. 2 sacks of BENT	CONITE	E .						
<u>-</u>	(II)s	e roverse sid	e of Well (Owner's copy.	If necessary)	Method I	Ised TR	EMIE Sealed By:	A&F		110.00 4 64	10				
ı ∐w	ell plug	ged withi	n 48 ho	urs		Distance	to septic f	ield or other concent	rated conta	iminati	on: <u>151</u> onerty I	In. ine: 150f				
-		A22 5700 200 m				Distance	to Septic	ment OWNER	Approv	ved by	Variance	e#:				
		/Bentonite r					or integration	mpletion			iller?					
vell:			Ta/(0)	#Sacke or	Material used	11) Su	rface Co	Mibienon	~ombietea	ייש עט	✓ Surface Slab Installed ☐ Surface Sleeve Installed					
vell: To (ft)	From (f		To (ft)	#Sacks or	Material used	11) Su	rface Co ce Slab In	stalled	Surface Slo	eeve In	stalled					
			To (ft)	#Sacks or	Material used	11) Surfa		stalled	-	eeve In	stalled	sed				
			To (ft)	#Sacks or	Material used	11) Surfa	ce Slab In s Adapter	stalled Used	Surface Slo	eeve In e Proce	stalled	ed				
To (ft)			To (ft)	#Sacks or	Material used	11) Surfa Surfa Pitles Othe 12) W:	ce Slab In is Adapter r ater Lev	stalled Used Used Usel	Surface Slo Alternative	eeve In e Proce	stalled	ed				
To (ft)	From (f			#Sacks or		11) Surfa Surfa Pitles Othe 12) W:	ce Slab In is Adapter r ater Lev	stalled Used Use	Surface Slo Alternative Steel Case	eeve In e Proce d	stalled	sed				
Ío.(ft) imp □ Jet	From (f	1)				11) Surfa Surfa Pitles Other 12) Was Static lev	ce Slab In s Adapter r ater Lev vel 11.63 Flow	stalled Used Used Usel	Surface Slo Alternative Steel Case	eeve In e Proce d	stalled	ed				
imp	From (f	Submers	sible			11) Surfa Surfa Pitles Othe 12) W: Static le	ce Slab In s Adapter r ater Lev vel 11.63 Flow	stalled Used I vel ft. Date: 2/14/15 gpm Method of	Surface Slo Alternative Steel Case	eeve In e Proce d	stalled dure Us					
To (ft) amp ☐ Jet bowls, cylind	From (f	Submers	sible			11) Surfa Surfa Pitles Othe 12) Was Static let Artesian 13) Pa	ce Slab In s Adapter r ater Lev vel 11.63 Flow	stalled Used Use	Surface Slo Alternative Steel Case	eeve In e Proce d	stalled dure Us	Depth				
imp Jet	From (f	Submers	sible		ar'	11) Surfa Surfa Pitles Othe 12) Was Static let Artesian 13) Pa	ce Slab In s Adapter f ater Lev vel 11.63 Flow ckers:	stalled Used I vel ft. Date: 2/14/15 gpm Method of	Surface Slo Alternative Steel Case	eeve In e Proce d	stalled dure Us					
To (ft) amp ☐ Jet bowls, cylind	er, jet, etc	Submers	sible	☐ Cylinde	ar'	11) Surfa Surfa Pitles Othe 12) Was Static let Artesian 13) Pa	ce Slab In s Adapter f ater Lev vel 11.63 Flow ckers:	stalled Used I vel ft. Date: 2/14/15 gpm Method of	Surface Slo Alternative Steel Case	eeve In e Proce d	stalled dure Us					
imp	From (f	Submers ft. etted Es awdown after	sible stimated ter	□ Cylinde	er ther	11) Surfa Surfa Pitles Othe 12) W: Static le: Artesian 13) Pa	ce Slab In S Adapter F Ster Lev Vel 11.63 Flow Ckers:	stalled Used In Used In	Surface Sli Alternative Steel Case Measuren Type	eeve In e Proce d	stalled dure Us	Depth				
imp	From (f	Submers ft. etted Es awdown after	sible stimated ter	□ Cylinde	er ther	11) Surfa Surfa Pitles Othe 12) W: Static le: Artesian 13) Pa	ce Slab In S Adapter F Ster Lev Vel 11.63 Flow Ckers:	stalled Used In Used In	Surface Sli Alternative Steel Case Measuren Type	eeve In e Proce d	stalled dure Us	Depth				
To.(ft) Imp Jet bowls, cylind Fest Pump Ba appm with Quality a: 18 Was a ct	er, jet, etc	Submers ft. etted Es awdown after allysis made	sible stimated ter ?	Cylinde	er ther you knowingly	11) Surfa Surfa Pitles Othe 12) W: Static le: Artesian 13) Pa	ce Slab In ss Adapter f ater Lev vel 11.63 Flow ckers: ype	stalled Used In Used In	Surface Sli Alternative Steel Case Measuren Type constituen	eeve In e Proce d nent	stalled dure Us	Depth No				
To.(ft) Imp Jet bowls, cylind Fest Pump Ba gpm with Quality a: 18 Was a ct water Naturally p	er, jet, etc. iler	Submers ft. etted Es awdown after halysis made	sible stimated ter e? Yes	Cylinde	ther you knowingly !	11) Surfa Surfa Pitles Other 12) W: Static let Artesian 13) Pa penetrate a	ce Slab In ss Adapter fater Lev vel 11.63 Flow ckers: ype	stalled Used In Used In It. Date: 2/14/15 gpm Method of It. Depth	Surface Sli Alternative Steel Case Measuren Type constituen ste contam	eeve In e Proce d nent e	stalled dure Us	Depth No				
To.(ft) Imp Jet bowls, cylind Fest Pump Ba gpm with Quality a: 18 Was a ct water Naturally p Cither (desc	iler Je etc. jet, etc. jet, etc. iler demical an	Submers ft. etted Es awdown after halysis made	sible stimated ter Yes	Cylinde	ther you knowingly the state of the state o	11) Surfa Surfa Pitles Other 12) W: Static let Artesian 13) Pa penetrate a a. gas, oil, e	ce Slab In is Adapter fater Level 11.63 Flow ckers: strata white tc.) Haware or o	stalled Used In Used In It	Surface Sli Alternative Steel Case Measuren Type constituen ste contam	eeve In e Proce d nent e	stalled dure Us	Depth No				
To (ft) Jet bowls, cylind Fest Pump Ba gpm with Quality a: 18 Was a ct water Nother (desi	er, jet, etc. iler	Submers ft. etted Es awdown after malysis made by groundwa ing, or other	sible stimated ter Yes ter type tryise alte	Cylinde Cylinde No Did No Did ring the abover plugged in	ther you knowingly Iydrocarbons (i.e. ye described well such a_manner	11) Surfa Surfa Pitles Other 12) W: Static le: Artesian 13) Pa To	ce Slab In is Adapter fater Level 11.63 Flow ckers: strata white tc.) Haware or o	stalled Used Interest	Surface Sli Alternative Steel Case Measuren Type constituen ste contam puntered an	eeve In Proced d	Yes E	Depth No				
To.(ft) Test Pump Ba gpm with Quality a: 18 Was a ct water Naturally p Collect (desent while drilling is informed that my & Indiv	er, jet, etc iler	Submers ft. etted Es awdown after alysis made by groundwa ing, or other Il must be co Name: (t	stimated ter Yes tter type tryise alte anyleted of	Cylinde Cylinde No Did No Did ring the aborr plugged in	ther you knowingly play to the property of th	11) Surfa Surfa Pitles Other 12) Was Static let Artesian 13) Pa Topenetrate a a. gas, oil, et b. linjurious as to avoid c. d.	strata which can be injury or character or c	stalled Used Used Used Used Used Used Used Us	Surface Sli Alternative Steel Case Measuren Type constituen ste contam puntered an Lic.	eeeve In Proce d d d l l l l l l l l l l l l l l l l	Yes a encour	Depth No stered				
To.(ft) Test Pump Ba gpm with Quality a: 18 Was a ct water Naturally p Collect (desent while drilling is informed that my & Indiv	er, jet, etc iler	Submers ft. etted Es awdown after alysis made by groundwa ing, or other Il must be co Name: (t	stimated ter Yes tter type tryise alte anyleted of	Cylinde Cylinde No Did No Did ring the aborr plugged in	ther you knowingly play to the property of th	11) Surfa Surfa Pitles Other 12) Was Static let Artesian 13) Pa Topenetrate a a. gas, oil, et b. linjurious as to avoid c. d.	strata which can be injury or character or c	stalled Used Used Used Used Used Used Used Us	Surface Sli Alternative Steel Case Measuren Type constituen ste contam puntered an Lic.	eeeve In Proce d d d l l l l l l l l l l l l l l l l	Yes a encour	Depth No stered				
To.(ft) Test Pump Ba gpm with Quality a: 18 Was a ct water Naturally p Collect (desent while drilling is informed that my & Indiv	er, jet, etc iler	Submers ft. etted Es awdown after alysis made by groundwa ing, or other Il must be co Name: (t	stimated ter Yes tter type tryise alte anyleted of	Cylinde Cylinde No Did No Did ring the aborr plugged in	ther you knowingly play to the property of th	11) Surfa Surfa Pitles Other 12) Was Static let Artesian 13) Pa Topenetrate a a. gas, oil, et b. linjurious as to avoid c. d.	strata which can be injury or character or c	stalled Used Used Used Used Used Used Used Us	Surface Sli Alternative Steel Case Measuren Type constituen ste contam puntered an Lic.	eeve In Proce d d tts? innation not the	Yes a encour	Depth No stered				
	JO WASTE (OCATION JNTY Vork Recondi Decpeni Dete 1/2 1/3 To (ft.) 13 30	JO WASTE MNG. OCATION JNTY Vork Reconditioning Decpening Decpening To (ft.) Description 13 SAND 30 RED (B52-S USUAL Well plug	JO WASTE MNG. 1116 CADOCATION Physical A 59 & LG Vork	JO WASTE MNG. DOCATION Physical Address: 59 & LOS CEN	A. WELL IDENTIFICATION Address: 1116 CALLE DEL NOR OCATION Physical Address: 59 & LOS CENTENARI Lat. 27.554393 4) Proposed Use (check) Irrigation Injection Inject	A. WELL IDENTIFICATION AND Address: 1116 CALLE DEL NORTE OCATION Physical Address: 59 & LOS CENTENARIOS Vork Reconditioning Decpening Irrigation Other Other 6) Diameter of Hole 1/25/2015 Dia. (in) From (ft) To (ft.) Description and color of formation material 13 SANDY CLAY 30 RED CLAY Well plugged within 48 hours	A. WELL IDENTIFICATION AND LOC Address: 116 CALLE DEL NORTE	Address: City: LAR	A. WELL IDENTIFICATION AND LOCATION DATA Address	A. WELL IDENTIFICATION AND LOCATION DATA Address	A. WELL IDENTIFICATION AND LOCATION DATA Address	A. WELL IDENTIFICATION AND LOCATION DATA Address:				

Additional information or comments:	

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material

-5-20 -55		

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy

Texas Department of Licensing and Regulation

Water Well Driller/Pump Installer Section

P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880

Email address: water.well@license.state.tx.us Web address: www.tdlr.texas.gov

This form must be completed and filed with the department and owner within 60 days upon

WELL REPORT completion of the well. A. WELL IDENTIFICATION AND LOCATION DATA												
1) OWNER				L IDENTIF	CATION A	ND LO		DATA				
Name:			Address:		DD		City:			tate:	Zip:	1
	EJO WASTE		1116 CALL	E DEL NOR	IE	LAREDO TX 78401					Ţ	
Z) WELL I	2) WELL LOCATION County: Physical Address:						City:			State:	Zip:	
County: WEBB CO			59 & LOS (CENTENARI				EDO		ГХ	7804	1
3) Type of	Work		Lat. 27.5543		Long. 99.			GPS Datun		Eleva	_	
New Well ☐ Reconditioning 4) Proposed Use (check) ☐ Monitor ☐ Replacement ☐ Despening ☐ Irrigation ☐ Injection ☐ Extraction ☐ D					☐ Environmental Soil Boring ☐ Domestic ☐ Industrial ☐ Frac De-watering ☐ Testwell ☐ Rig Supply ☐ Stock or Livestock Public Supply — If Public Supply, were plans approved? ☐ Yes ☐ No							
5) Drilling	Date		6) Diameter	of Hole		7) Drill	ling Meth	od (check) 🗆	Driven 🗓 /	Air Rota	ry 🔲	Mud Rotary
Started		6/2015	Dia. (in)	From (ft)	To (ft)	☐ Bored	Air Ha	ammer 🔲 Cable	Tool 🔲 Jette	ed 🗌 H	follow s	tem Auger
Completed	<u>1/2</u>	7/2015	6-1/4	0	92			tion 🗌 Other				
Number of id	lentical wells dr	lled	12-1/4	0	30	-4 ′		mpletion [☑ Filter Packed	Open Hole		Straigh	t Wall
From (ft.)	To (ft.)	Descri	otion and co	or of format	ion materia			al from 92 ft, to:	_	X20 Tv	pė .	
0	13		Y CLAY	v.mat	INCOME AND ADD			k Pipe, and V				
13	40	RED C					New	Steel, Plastic, et			ıg (ft)	Gage
40	60	BLUE	CLAY			Dia.	Or	Perf., Slotted, et				Casing
60	92	LAYE	RED RED C	LAY & SAN	DSTONE	(in.)	Used	Screen Mfg., if			То	Screen
						2	N	PVC SCH 8		80	+2	
						2	N	SLOTTED	V	90	80	0.010"
		B52-D				8	NT.	DVC CCH 4	O Carreta -	30	0	
	· SAIRCE						N	PVC SCH 4	u-suriace	20	0	
						10) An	nular Se	al Data: ie. (fic	om 0 ft 10 10	0 ft. 15 s	acks of c	ement)
						10) Annular Seal Data: i.e. (from <u>0</u> . ft. 10 100 ft. 15 sacks of <u>coment</u>) from: <u>10</u> ft. to: <u>0</u> ft. <u>2</u> sacks of <u>CEMENT</u>						
						from: 78ft. to: 10ft. 6 sacks of BENTONITE						
1.0 = 1				eli Owner's copy,	If песеззагу)	Method Used: TREMIE Sealed By: A&F						
14) Plugged	1 ∐ W∈	,	ed within 48			Distance	Distance to septic field or other concentrated contamination: 150 ft. Distance to Septic Tank: 150 ft. Distance to Property Line: 150 ft.					
Casing left in v	T		Bentonite placed					ment: OWNER		ved by		
From (ft)	To (ft)	From (ft)	To (ft	#Sacks or M	Material used	-1		mpletion	Completed			y Yes
	-						ice Slab Ins	_	Surface SI			
						_	ss Adapter l		Alternativ		aure Us	ea
4.8\ 77						☐ Othe			Steel Case	a		
15) Type P		_	701 ""	П . · ·			ater Leve		5			
☐ Turbine	☐ Jet	L	Submersible	☐ Cylinder			Static level 11.29 ft. Date: 2/14/15					
Other N/A	•		Λ			Artesian Flow gpm Method of Measurement 13) Packers:						
	bowls, cylinder	, jet, etc.,	ft.					D=-4L	T			Denth
16) Water		🖂 •	🗆 🗁	. M	har	1	уре	Depth	Тур	-		Depth
Type test ☐ Yield:	Pump Ban gpm with		ed Estimate Whown after	od ⊠Oti hrs	iici							
17) Water		n. urav	AGOMII RITEL	1112		1						
		mical anal	lysis made? 🗀 🕆	es 🔯 No Did v	ou knowinely i	enetrate a	strate which	contains injurior	ıs constituen	ts? 🔲 Y	/es⊠	No
If yes, Type of		w. w.u.	,,									
			groundwater typ	oe [] Hy	ydrocarbons (i.e	gas, oil, e	tc.) 🔲 Haz	ardous material/v	vaste contam	ination	encount	ered
- Loorlife the	Other (descr	deeneniu	a or otherwise	lterina tha ahow	described and	iniurious	water or co	nstituents was en	countered or	d the		
landowner was	s informed that :	such well	must be camplete	ed or plugged in .	such a manner	s to avoid	injury or po	ollution.				
			lame: (type o		Kons	11/	D. E1	211	Lic.	No.: 32	243	
Address: PC	O BOX 348		30.200	* - *		C	ity: ATH	ENS	State: TX	Zi	p: 75 7	51
By signing this	well report, you	certify th	at you drilled or					ll of the statemen	ts herein are	true an	d corre	ct.
Signature:	Konal		- Eller	ا ذ	Date 14		Name:	That	sed Assistant (p	rinted		
TDLR FORM	Licensed Driller/Pu VI 001 WWD /			LR (Original)	OVER	Landowi	ner (copy)		er/Pump Ins	Tripletti co	ору)	

litional information or comme	115:	 	

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or th eperson for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
10/52=110		
	2 0117020-87	
y-111		
	_	
Taxable.		
		W-100

Texas Department of Licensing and Regulation

This form must be department and owner within 60 days upon completion of the well.

Unlicensed Assistant (printed)

Driller/Pump Installer (copy)

Attention Owner: Weter Well Driller/Pump Installer Section P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880 Email address: water.well@license.state.tx.us Web address: www.tdlr.texas.gov completed and filed with the Confidentiality Privilege Notice on reverse side of owner's copy WELL REPORT A. WELL IDENTIFICATION AND LOCATION DATA 1) OWNER State: Zip: 78401 RANCHO VIEJO WASTE MNG. 1116 CALLE DEL NORTE LAREDO TX 2) WELL LOCATION County: Physical Address: City: State: Zip: LAREDO 78041 59 & LOS CENTENARIOS TX WEBB COUNTY Long. 99.152657 3) Type of Work Lat. 27.566898 GPS Datum Elevation ☐ Environmental Soil Boring ☐ Domestic ☐ Industrial ☐ Frac ☐ De-watering ☐ Testwell ☐ Rig Supply ☐ Stock or Livestock ☐ Public Supply — If Public Supply, were plans approved? ☐ Yes ☐ No New Well Reconditioning 4) Proposed Use (check) Monitor Monitor Replacement Deepening Other ☐ Irrigation ☐ Injection ☐ Extraction ☐ 5) Drilling Date 6) Diameter of Hole 7) Drilling Method (check) Driven Air Rotary Mud Rotary Started 2/5/2015 ☐ Bored ☐ Air Hammer ☐ Cable Tool ☐ Jetted ☐ Hollow stem Auger Dia. (in) From (ft) To (ft) Completed 2/6/2015 6-1/4 0 105 ☐ Reverse Circulation ☐ Other 12-1/4 0 40 Number of identical wells drilled 8) Borehole Completion Open Hole ☐ Under-reamed 🛛 Filter Packed 🔲 Other at this location: From (ft.) Description and color of formation material To (ft.) Filter packed interval from 105 ft. to: 92 ft, Size:12X20 Type SANDY CLAY 9) Casing, Blank Pipe, and Well Screen Data 13 35 13 **RED CLAY** New Steel, Plastic, etc. Setting (ft) Gage BLUE CLAY & SANDSTONE 35 50 Dia. Perf., Slotted, etc. Casing Or 100 Screen Mfg., if commercial 50 DARK RED CLAY (in.) Used From Screen **PVC SCH 80** 100 105 SANDSTONE & RED CLAY +2 PVC SCH 80 SLOTTED 103 93 0.010" B55-D PVC SCH 40 -40 0 SURFACE 10) Annular Seal Data: i.e. (from 0 ft. to 100 ft. 15 sacks of cement) from: 10ft. to: 0ft. 2 sacks of CEMENT from: <u>92</u>ft. to: <u>10</u>ft. <u>6</u> sacks of <u>BENTONITE</u> Method Used: TREMIE Sealed By: A&F (Use reverse side of Well Owner's copy, If necessary) 14) Plugged ■ Well plugged within 48 hours Distance to septic field or other concentrated contamination: 150ft, Distance to Property Line: 150ft. Distance to Septic Tank: 150ft. Method of Measurement: OWNER Casing left in well: Cement/Bentonite placed in well: Approved by Variance #: From (ft) To (ft) From (ft) To (ft) #Sacks or Material used 11) Surface Completion Completed by Driller? X Yes Surface Slab Installed ☐ Surface Sleeve Installed ☐ Pitless Adapter Used ☐ Alternative Procedure Used Other Steel Cased 15) Type Pump 12) Water Level ☐ Turbine ☐ Jet Static level 10.28ft. Date: 2/14/15 ☐ Submersible ☐ Cylinder Other N/A Artesian Flow gpm Method of Measurement 13) Packers: Depth to pump bowls, cylinder, jet, etc. 16) Water Test Type Depth Type Depth Type test Pump Bailer Jetted Estimated Other gpm with ft, drawdown after 17) Water Quality Depth of Strata: 93 Was a chemical analysis made? Tyes 🖾 No Did you knowingly penetrate a strata which contains injurious constituents? Tyes 🖾 No If yes, Type of water Check One: Naturally poor-quality groundwater type _____ Hydrocarbons (i.e. gas, oil, etc.) Hazardous material/waste contamination encountered Other (describe) 🔲 I certify that while drilling, deepening, or otherwise altering the above described well, injurious water or constituents was encountered and the landowner was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution. Lic. No.: 3243 18) Company & Individual's Name: (type or print) 2/1/5 Zip: 75751 **PO BOX 348** City: ATHENS Address: State: TX By signing this well report, you certify that you drilled or supervised the drilling of this well and that each and all of the statements herein are true and correct. Signature: Konold D. Sulle 2/6//5 Name: mold

TDLR (Original)

OVER

Landowner (copy)

TDLR FORM 001WWD / 11-13

Additional information	or comments:		
[
l 12			

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or th eperson for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
		and the second s
111111111111111111111111111111111111111		
7.11.20.		
SPC-V SHIT		
		<u> </u>
		
		——————————————————————————————————————
		· . · · · · · · · · · · · · · · · · · ·

Attention Owner:
Confidentiality Privilege Notice
on reverse side of owner's copy

Texas Department of Licensing and Regulation
Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
il address: water well@license.state.tx.us Web address: www.tdlr.texas

This form must be completed and filed with the department and owner within 60 days upon

OIL 1646126 210	ac of owner 2 co	בם נקי	man ac	duress: wa		ELL REP		uress. <u>ww</u>	Wittin texas.gov		i n ou da pletion o		
			A	. WELI		ICATION A		CATION	I DATA				
1) OWNER	<u> </u>		1.11					lain			Cintar	Zip:	
Name:	EJO WASTE I	ANC	Addres		DEL NOR	TE		City:	REDO		State: TX	7840	11
	OCATION		1110	CALLE	DEL NOR	TE	MANUAU IA /0401						
County:	JO OIR I I OI		Physic	al Address	:		City: State: Zip:						
WEBB CO	UNTY		59 &	LOS C	ENTENARI	ios		LAF	REDO		TX	7804	1
3) Type of	Work		Lat.	27. 57643	37	Long. 99.1			GPS Datum		Eleva		
⊠ New Well	Recondi		<u>4)</u> Pr	oposed	Use (check)	Monitor [☐ Enviror	mental So	il Boring Do	mestic [Industr	ial 🗆	Frac
Replaceme	nt Deepeni	ng			Injection 🔲	Extraction L	e-watennį Public Su	g ∐Tesi ınniv if	well Rig Sup Public Supply, we	piy ∐∷Si re plans and	roved?	Liveston	к s П No
5) Drilling	Date			iameter (of Hole	- III			nod (check) 🔲				
Started		1/2015		a. (in)	From (ft)	To (ft)	1 '	_	ammer Cable 7				
Completed		1/2015	-	-1/4	0	32		_	tion 🔲 Other		_		81
	entical wells dr			-						Open Hole	<u> </u>	Straight	t Wall
at this locatio							1		Filter Packed	-			
From (ft.)	To (ft.)	Descri	ption	and cold	r of format	ion material	Filter pac	ked interv	al from 32 ft. to: 1	9 ft. Size:12	X20 Ty	те	
0	13	SAND	Y CL	AY			9) Casi	ng, Blar	ık Pipe, and V	Vell Scree	en Dat	а	
13	35	RED C	LAY					New	Steel, Plastic, etc		Settir	ng (ft)	Gage
							Dia.	Or	Perf., Slotted, etc		F	т.	Casing
							(in.)	Used	Screen Mfg., if c		20	To +2	Screen
						~	-	13	PVC SCH 80		20	172	
							2	N	SLOTTED	\$1.	30	20	0.010"
		B58-S											
-, -									-				
							10) An	nular Se	al Data: i.e. (fro.	m 0 ft to 10	0.6.15.6	acks of c	ement)
				777		-114/17	from: 10	ft. to: Oft.	2 sacks of CEM	ENT	<u>o</u> <u>12</u> a	2013 01 <u>c</u>	ornera)
							from: 19	ft. to: 10ft	. 1 sacks of BEN	TONITI	3		
					Owner's copy.	If necessary)			EMIE Sealed By			4.00	١
14) Plugged	I ∐ W€	il plugg	ed wit	thin 48 h	ours				ield or other conce Fank; 150ft.				ine: 150ft.
Casing left in v	vell:	Cement/F	3entoni	ite placed in	ı well:				ment: OWNER		wed by		
From (ft)	To (ft)	From (ft)		To (ft)		Material used			mpletion	Complete			
							⊠ Surfa	ce Slab Ins	talled	Surface SI	eeve In:	stalled	
							☐ Pities	s Adapter	Used [] Alternativ	e Proced	dure Us	ed
							☐ Other			Steel Case	:d		
15) Type Pı	ımp						12) Wa	ter Lev	el				
Turbine	☐ Jet] Subm	nersible	Cylinder				t. Date: <u>2/14/15</u>	•			
Other N/A							Artesian	-	gpm Method o	of Measurer	nent		
	bowls, cylinder	, jet, etc.,		ft.			13) Pac	ckers:					
16) Water 7	Γest						Ту	pe	Depth	Тур	e	1	Depth
	Pump 🔲 Baile	r 🗌 Jett	ed 🗌	Estimated	⊠ Oth	her							
	gpm with	ft. drav	vdown a	after	hrs								
17) Water (57 N 50			1 1 1 1 1 1 1			4-0[] N	/+= M	N.
Depth of Strata		mical anal	ysis ma	ide? 🔛 Ye	s 🔀 No Dia y	ou knowingly pe	netrate a s	trata which	n contains injuriou	s constituen	IS? L	162 M	140
Check One:	Naturally poo	r-quality	ground	water type	🗆 Ну	drocarbons (i.e.	gas, oil, et	c.) 🔲 Haz	ardous material/w	aste contam	ination	encount	ered
	Other (descri	be)	_										
						i described well, such a manner as			nstituents was enc	ountered ar	id the		
	ny & Individ					Rowel	CC &	1115	manuri.	Lie	No.: 32	243	
	BOX 348			(3) po 01		Honel	Ci	ty: ATH	ENS S	tate: TX		p: 75 7	51
By signing this	well report, you	certify th	at you (drilled or s	upervised the d	rilling of this wel	land that	each and a	Il of the statement				
Signature:	Kmard	8	الاع	لما	3/	Date / /S		Name:		d Assistant (p			
	Licensed DrillenPu 1 001 WWD /			TDI	R (Original)	OVER	Landown	er (conv)		r/Pump Ins		opv)	

dditional information	or comments.	200	
	4		

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
		The second secon
		· · · · · · · · · · · · · · · · · · ·
		La di Cara Cara Cara Cara Cara Cara Cara Car
1.00		
	_	

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy

Texas Department of Licensing and Regulation
Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
Email address: water.well@license.state.tx.us Web address: www.tdlr.texas.gov
WELL REPORT

This form must be completed and filed with the department and owner within 60 days upon completion of the well.

			A. WEL	L IDENTIFI	CATION A	ND LOC	CATION	DATA			1	.,
1) OWNE	.										Ta:	
Name:			Address:			City: LAREDO			1 (2)	tate:	Zip: 7840	
	EJO WASTE N		1116 CALL	E DEL NOR	TE		LAR	EDO		rx_	/840	<u> </u>
	LOCATION		In. (())				10:5		17	doto	Zip:	
County:	TIBLETY		Physical Addres 59 & LOS C		.O.C		City:	EDO		itate: ГХ	7804	1
WEBB CO			Lat. 27.5763		Long. 99.1:	52213	LAN	GPS Datu		Eleva		
3) Type of					Monitor [rial 🔲	Frac
New Well	Recondition Deepening		4) Proposed Irrigation	Use (check)	Extraction []	Enviror e-waterini	e Test	weil Rig Si	upply	ock or	Livestoc	k
Other	Deepenin	ъ.	Other			Public Su	pply If I	Public Supply, v	vere plans app	roved?	☐ Ye	s 🗌 No
5) Drilling	Date		6) Diameter	of Hole		7) Drill	ing Meth	od (check) [Driven 🛛 A	Air Rota	ry 🔲 I	Mud Rotary
Started	2/1	2/2015	Dia. (in)	From (ft)	To (ft)	☐ Bored	I 🔲 Air Ha	ımmer 🔲 Cabl	e Tool 🔲 Jette	ed 🔲 b	follow st	tem Auger
Completed	2/1	2/2015	6-1/4	0	150	☐ Reve	rse Circulat	ion 🗌 Other				
Number of ic	lentical wells dri	lled	12-1/4	0	40	8) Bore	ehole Co	mpletion	Open Hole	, 🗆	Straight	t Wall
at this location	on:		~~~~			Unde	r-reamed	Filter Packe	d 🔲 Other			
From (ft.)	To (ft.)	Descri	ption and col	or of format	ion material			il from 152 ft. t				
0	13	SAND	Y CLAY			9) Casi	ing, Blan	k Pipe, and	Well Scree	n Da	a	
13	50	RED C					New	Steel, Plastic,		Setti	ng (ft)	Gage
50	100		RED RED C		DSTONE	Dia.	Or	Perf., Slotted,		_	_	Casing
100	150	DARK	RED CLAY			(in.)	Used	Screen Mfg., i		From	To	Screen
L						2	N	PVC SCH		140	+2	
						2	N	SLOTTED		150	140	0.010"
		B58-D						BEOTTE		100	1.0	0.010
		DUU D				8	N	PVC SCH	40-Surface	40	0	
									114			
								al Data: i,e, (0 ft. <u>15</u> s	acks of <u>c</u>	ement)
								2 sacks of <u>CE</u>		יזני		
								ft, <u>8</u> sacks of <u>B</u> EMIE Scaled		E		
14) Plugge	d [We		reverse side of World		It necessary)	Distance	to sentic fi	eld or other con	centrated cont	ominati	on: 150)ft.
14) Tagge		ni piugg	cu within +o	.ioui s		Distance	to Septic T	ank: 150ft.	Distance	e to Pr	operty L	ine: <u>150</u> ft.
Casing left in	well:	Cement/	Bentonite placed	in well:		Method of Measurement: OWNER Approved by Variance #:						
From (ft)	To (ft)	From (ft)	To (ft)	#Sacks or N	Material used	11) Su:	rface Co	mpletion	Completed	d by Dr	iller? 🛭	Yes
	3.753.77					Surfa 🖾	ce Slab Ins	talled	Surface Si			
						☐ Pitles	s Adapter I	Jsed	Alternativ	e Proce	dure Us	ed
						Other	r		Steel Case	d		
15) Type P	ump						ater Leve					
☐ Turbine	☐ Jet		Submersible	Cylinder		Static lev	vel <u>18.56</u> f	t. Date: <u>2/14/</u>	<u>15</u>			
Other N/A	<u>\</u>					Artesian	Flow	gpm Metho	d of Measuren	nent_		
Depth to pump	bowls, cylinder	, jet, etc.,	ft.			13) Pa	ckers:					
16) Water	Test					T	тре	Depth	Тур	e		Depth
Type test 🔲	Pump 🔲 Baile	er 🔲 Jeti	ed 🗌 Estimate	ı ⊠oı	her			245				
Yield:	gpm with		vdown after	hrs				2.0				
17) Water	Quality		(8				* 1					
Depth of Strat	a: <u>140</u> Was a cl	nemical an	alysis made? 🔲	Yes 🛛 No Did	you knowingly	penetrale a	strata whi	ch contains inju	rious constitue	nts? 🗀	Yes 🛭	No
If yes, Type of				0.0					,			
			groundwater typ	еН	drocarbons (i.e.	gas, oil, e	(c.) 📙 Haz	ardous material	/waste contam	ination	encoun	terea
L cartify the	Other (descr	deenenin	g, or otherwise a	ltering the above	described well.	inturtous	water or co	nstituents was e	ncountered ar	d the		
landownerwa	s informed that .	uch well	must be complete	d or plugged in ;	such a manner as	to avoid	injury or po	Ilution.				
18) Compa	ny & Indivi	dual's N	lame: (type o	r print)	Ronald	D. :	21113		Lic.	No.: 3	243	
Address: P	ddress: PO BOX 348					C	ity: ATH	ENS	State: TX		ip: 757	
By signing this	well report, you	certify th	ut you drilled or	supervised the d				ll of the stateme	ents herein are	true ar	d corre	ct
Signature:	Konald		كالك	ا ک	6 //5		Name:	No. 11.	ensed Assistant (p	cinted)		
TOLR FOR	'Ucensed Drillen/Pa M 001 WWD /			LR (Original)	OVER	Landow	ner (copy)		tler/Pump Ins		copy)	
TOLKTOR	TA OUT W WID!	11-13		LA (Original)	UTDA	-undown	ici (copy)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The same area	7		

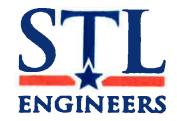
ditional information or comment	s:	

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
		400
		\$
		3
	10.24	4
		3
		- AND
		, , , , , , , , , , , , , , , , , , ,

III-E.5-F Geotechnical Test Data


This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Borehole	Depth (ft.)	Water Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Maxlmum Size (mm)	% <#200 Sieve	Hydraulic Conductivity (cm/sec)	Dry Density (pcf)	Compressive Strength (tsf)	Strain at Failure (%)
B-52	13.5	11.4	31	17	14	0.075	48				
B-52	27.5	6.7	NP	NP	NP	0,075	18				
B-52	40.5		85	25	60	0.075	99				
B-52	49.0	17.0	58	21	37	0.075	93				
B-52	60.0	8.1	45	18	27						
B-52	73.0	15.2	65	23	42						
B-52	77.0	7.7	45	18	27	0.075	62				
B-52	86,0	10,0	32	18	14	0.075	28				
B-52	88.0	10.7	86	25	61						
B-52	89.0	11.0	57	22	35						
B-52	98.0	8.0	47	18	29						
B-52	114.0	11.7	70	24	46				128.4	31.1	0.5
8-52	125.0	9.4	77	26	51						
B-52	140.0	11.0							129.9	54.2	0.4
B-52	141.0	12,6	58	23	35	0.075	97				
B-52	146.5	8.0	45	18	27	0,075	39	1.733x10(-9)			
B-55	14,0	14.3	61	22	39						
B-55	25.0	14.8	90	27	63						
B-55	27,5	13.3	85	26	59						
B-55	79.0		66	24	42			2.843x10(-7)			
B-55	98.0		34	17	17	0.075	26				
B-55	103.0		55	21	34	0.075	90				
B-55	128.0		50	19	31	0.075	85				
B-55	138.5	19.3	112	30	82						
B-58	12.5	20.6	67	24	43						
B-58	23.0	24.7	90	29	61						
B-58	28.0	27.5	85	28	57						
B-58	32.5	23.9	114	31	83						
B-58	57.0	13.7	89	25	64						
B-58	67.0	15.2	124	31	93						
B-58	95.5	11.4	54	20	34	0.075	44	1.942x10(-9)			
B-58	96.5	10.1							124.4	64.8	0.5
B-58	106.0	13.2	120	31	89	0.075	100				
B-58	148.5	10.0	63	22	41	0.075	94	5.424x10(-11)			
B-58	149,5	6,2							136.6	124.9	0.7

Pescadito Environmental Resource Center Laredo, Texas Project No: 15-1772

		9

Atterberg Limits & Passing # 200 Sieve Report

CUENT:

CB&I

DATE OF REPORT:

2/5/2015

12005 Ford Road, Suite 600

Dallas, Texas 75234

PROJECT:

Pescadito Environmental Resource Center

STL Project No:

G15-1772

Webb County Laredo, Texas

Sample	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing # 200 Sieve (%)
Light greenish CLAY (CH)	75	16	59	75
Light reddish CLAY (CH)	83	23	60	98

Staff Engineer # 117596

Registered Engineering Firm # 8133

1341 W Mockingbird Lane, # 1200 W, Dallas, Texas 75247

Test Pit 1 Sample Results

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter Method A - Constant Head

Job No.: 04-4015-1038

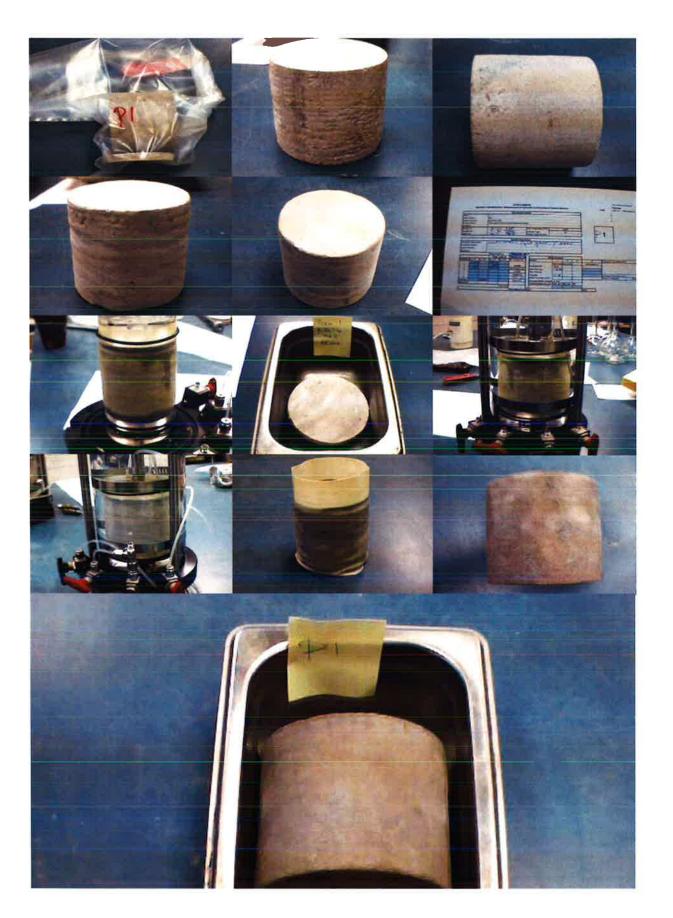
Pescadito Environmental Resource Center

Client:

STL ENGINEERS

Project: Boring: B-52 Depth, ft: 146.5'

SAMPLE:	Initial	Final		APPLIED PF	RESSURES:			
Weight:	702.3	705.5	g.	Inlet:	105.00 psi	Confini	ng: 110.00	psi
Height:	2.674	2.683	in.	Outlet:	100.00 psi			
Diameter:	2.910	2,898	in.		***	- W		-70
MC:	7.2	8.0	%					
Wet Density:	150.4	151.9	pcf					
Dry Density:	140.2	140.6	pcf					
Void Ratio:	0.224	0.221						
Saturation:	89.0	99.9	%					
Assumed Sp. Gr.:	2.750	2.750		INFLUENT	PIPETTE		EFFLUENT P	PIPETTE
			Dia	meter:	1.128 cm	D	iameter:	1.128 cm
Area:	6.60	in ²	Α	rea:	1.00 cm ²		Area:	1.00 cm ²
Volume:	17.64	in ³						
Colid Volume:	14.00	:-3						


Average water temp.	24.3	C°	Initial	Fir
Pore Volume:	3.44	in ³		
Solid Volume:	14.20	in ³		
Volunio.	17.07	***	!	

7 0.0 1.0	J. Carrier	9111				-		-				
Average wa	ter temp.	24.3	C°	In	itial	Fi	Final					
Initi	ial	Fin	al	I _o	E _o	I,	E,	Temp.	Time	Average Flow, ΔQ	Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
te	time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min.)	(cm ³)	(cm/sec)	(cm/sec)
2015	16:10:00	3/27/2015	9:10:00	10.00	10.00	10.66	9.71	23.1	1020.00	0.48	3.534E-09	3.283E-09
3/27/2015	9:10:00	3/27/2015	15:20:00	10.66	9.71	10.80	9.61	23.3	370.00	0.12	2.462E-09	2.276E-09
3/27/2015	15:20:00	3/28/2015	19:50:00	10.80	9.61	11.50	9.18	25.3	1710.00	0.56	2.497E-09	2.205E-09
3/28/2015	19:50:00	3/29/2015	18:25:00	11.50	9,18	11.92	8.88	25.2	1355.00	0.36	2.030E-09	1.797E-09
3/29/2015	18:25:00	3/30/2015	9:35:00	11.92	8.88	12.21	8.70	24.5	910.00	0.24	1.960E-09	1.763E-09
3/30/2015	9:35:00	3/30/2015	16:00:00	12,21	8.70	12.36	8.64	24.2	385.00	0.10	2.070E-09	1.875E-09
3/30/2015	16:00:00	3/31/2015	8:50:00	12.36	8.64	12.67	8.49	24.2	1010.00	0.23	1.728E-09	1.565E-09

Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
1.934E-09	1.733E-09
(cm	/sec)
	1.934E-09

1	d by:	TP
	ed by:	CT

Date: Date: 3/25/2015 4/1/2015

B-52 at 146.5'

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

Method A - Constant Head

Job No.: Project:

Boring: Depth, ft:

04-4015-1038
Pescadito Environmental Resource Center B-58 95.5'

Client:

STL ENGINEERS

SAMPLE:	Initial	Final		APPLIED P	RESSURES:			
Weight:	727.3	729.3	gr.	Inlet:	105.00 psi		Confining: 110.00	psi
Height:	2.857	2.863	in.	Outlet:	100.00 psi			
Diameter:	2.969	2.961	in.			1.6		
MC:	11.3	12.2	%					
Wet Density:	140.1	140.9	pcf					
Dry Density:	125.8	125.6	pcf					
Void Ratio:	0.324	0.327						
Saturation:	93.2	100.0	%					
Assumed Sp. Gr.:	2.670	2.670		INFLUENT	PIPETTE		EFFLUENT	PIPETTE
			Dia	ameter:	1.128 cm		Diameter:	1.128 cm
Area:	6.88	in ²		Area:	1.00 cm ²		Area:	1.00 cm
Volume:	19.67	in ³					D:	

Volume:	19.67	in ³
Solid Volume:	14.64	in ³
Pore Volume:	5.02	in ³

Average wa	ter temp.	24.2	C°	Ini	itial	Fi	nal					
Initi	al	Fin	al	l _o	E _o	l,	E,	Temp.	Time	Average Flow, ∆Q	Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
te	time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min.)	(cm ³)	(cm/sec)	(cm/sec)
2015	16:10:00	3/27/2015	9:10:00	10.00	10.00	10.55	9.58	23.1	1020.00	0.49	3.691E-09	3.429E-09
3/27/2015	9:10:00	3/27/2015	15:20:00	10.55	9.58	10.70	9.45	23.3	370.00	0.14	2.937E-09	2.716E-09
3/27/2015	15:20:00	3/28/2015	19:50:00	10.70	9.45	11.38	8.80	25.3	1710.00	0.67	3.019E-09	2.667E-09
3/28/2015	19:50:00	3/29/2015	18:25:00	11.38	8.80	11.81	8.35	25.2	1355.00	0.44	2.521E-09	2.232E-09
3/29/2015	18:25:00	3/30/2015	9:35:00	11.81	8.35	12.09	8.09	24.5	910.00	0.27	2.303E-09	2.072E-09
3/30/2015	9:35:00	3/30/2015	16:00:00	12.09	8.09	12,22	8.00	24.2	385.00	0.11	2.218E-09	2.009E-09
3/30/2015	16:00:00	3/31/2015	8:50:00	12.22	8.00	12.52	7.73	24.2	1010.00	0.28	2.191E-09	1.984E-09
3/31/2015	8:50:00	3/31/2015	14:40:00	12.52	7.73	12.63	7.66	23.9	350.00	0.09	1.996E-09	1.820E-09
		i i										

	Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k₂₀
Weighted Averages:	2.141E-09	1.942E-09
	(cm	/sec)

Tr	ੇ d by:	TP	Date:	3/22/2015
C	bd by:	SBM	Date:	4/1/2015

B-58 at 95.5'

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter Method A - Constant Head

Job No.:

Boring:

Depth, ft:

04-4015-1038

Project:

B-58

148.5'

Pescadito Environmental Resource Center

Client:

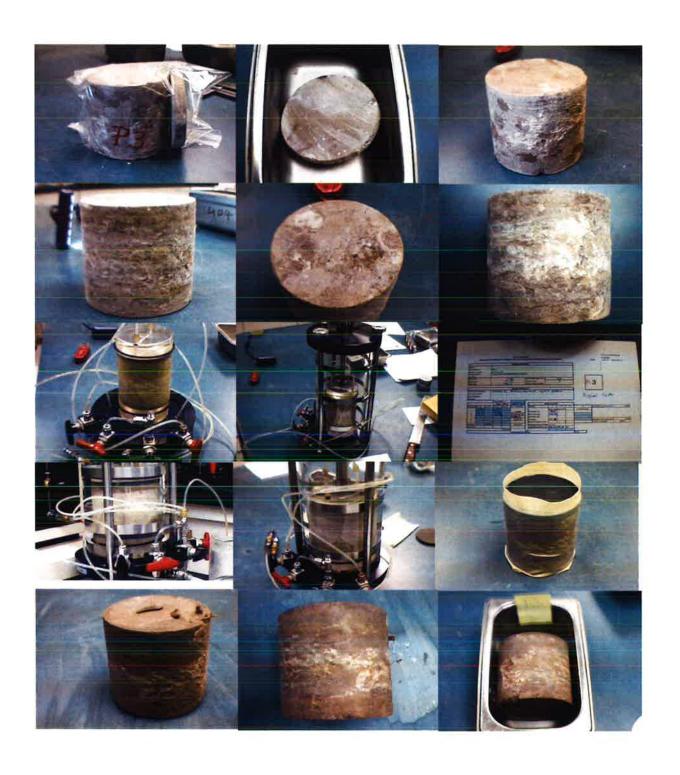
STL ENGINEERS

6.005E-11

5.424E-11

(cm/sec)

SAMF	LE:	Initial	Final		APPLIED PF	ESSURES:						
J	Weight:	812	816	g.	Inlet:	105.00		ī	Confining:	110.00	psi	
	Height:	2.977	2.963	in.	Outlet:	100.00		1				
	Diameter:	2.967	2.972	in.		, 00,00	poi					
	MC:	5.9	8.6	%	1							
١٨/ ۵	et Density:	150.3	151.3	pcf	1							
	y Density:	141.9	139.2	pcf	1							
	oid Ratio:	0.223	0.246	рог	1							
	Saturation:	73.8	97.6	%	1							
				/0	INFLUENT	DIDETTE		r		FFLUENT I	DIDETTE	I.
Assume	ed Sp. Gr.:	2.780	2.780	D:-			-					
			- 2		neter:	1.128		Diameter:		1.128 cm		
Are	ea:	6.94	in²	A	rea:	1.00	cm ²		Ar	ea:	1.00 cm ²	
Volu	ıme:	20.65	in ³									
Solid Vo		16.33										
		4.33	in ³									
Pore Vo		4.33	00					1				
verage wa	ter temp.	24.2	C.	In	itial	Fir	nal					
												Hydraulic
			- 1					1	l .	Average	Hydraulic	Conductivity
Initi	al	Fin	al	l _o	l E₀ I	l _f	E,	Temp.	Time	Flow, ∆Q	Conductivity, k	20°C, k ₂₀
te	time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min.)	(cm ³)	(cm/sec)	(cm/sec)
2015	16:10:00	3/27/2015	9:10:00	10.00	10.00	10.03	9.99	23.1	1020.00	0.02	1.563E-10	1.452E-10
3/27/2015	9:10:00	3/27/2015	15:20:00	10.03	9,99	10.05	9.99	23.3	370.00	0.01	2.693E-10	2.490E-10
3/27/2015	15:20:00	3/28/2015	19:50:00	10.05	9.99	10.17	9.99	25.3	1710.00	0.06	2.914E-10	2.573E-10
3/28/2015	19:50:00	3/29/2015	18:25:00	10.17	9.99	10.20	9.99	25.2	1355.00	0.02	8.825E-11	7.812E-11
3/29/2015	18:25:00	3/30/2015	9:35:00	10.20	9.99	10.21	9,99	24.5	910.00	0.01	8.760E-11	7.879E-11
3/30/2015	9:35:00	3/30/2015	16:00:00	10.21	9.99	10.22	9.99	24.2	385.00	0.00	5.176E-11	4.688E-11
3/30/2015	16:00:00	3/31/2015 3/31/2015	8:50:00 14:40:00	10,22 10.23	9.99 9.99	10.23 10.23	9.99 9.99	24.2 23.9	1010.00 350.00	0.00	3.946E-11 5.694E-11	3.574E-11 5.192E-11
3/31/2015	8:50:00	3/31/2015	14:40:00	10.23	9.99	10.23	9.99	23.9	350.00	0.00	5.094E-11	5.192E-11
							Č.					
					-							
					 							
					 							
										i		Lington (12)
											Hydraulic Conductivity, k	Hydraulic Conductivity 20°C, k ₂₀

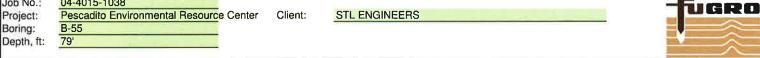

Weighted Averages:

ન્ત્ર by:

TP CT

Date: Date:

3/22/2015


B-58 at 148.5'

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

Method A - Constant Head

04-4015-1038 Job No.:

Pore Volume:

SAMPLE:	Initial	Final		APPLIED P	RESSURES:	
Weight:	517.5	527.72	gr.	Inlet:	102.00 psi	Confining: 105.00 psi
Height:	2.106	2.117	in,	Outlet:	100.00 psi	
Diameter:	2.904	2.939	in,			
MC:	13.0	16.6	%			
Wet Density:	141.3	140.0	pcf			
Dry Density:	125.0	120.1	pcf			
Void Ratio:	0.413	0.470				
Saturation:	89.3	99.6	%			
Assumed Sp. Gr.:	2.830	2.830		INFLUENT	PIPETTE	EFFLUENT PIPETTE
			Dia	meter:	1.128 cm	Diameter: 1.128 cm
Area:	6.78	in ²	А	rea:	1.00 cm ²	Area: 1.00 cm
Volume:	14 29	in ³			*	- M

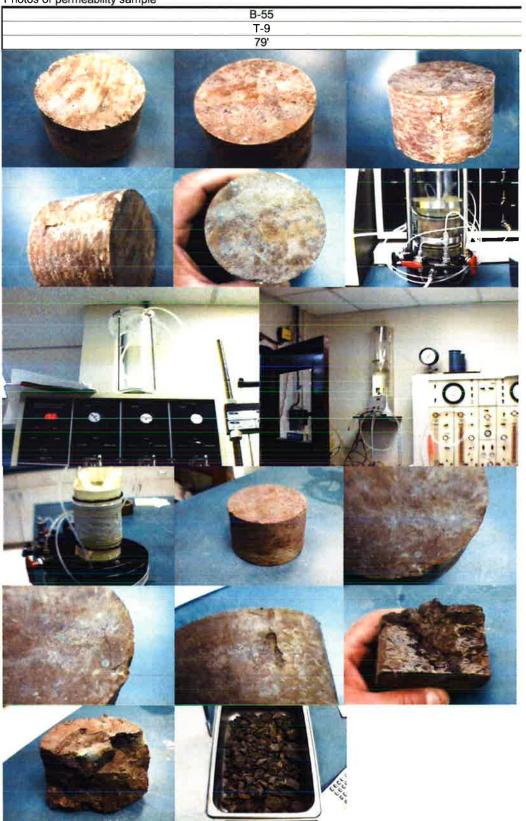
		Diameter.	1.120 011	Diameter.	1.120 (11)
Area:	6.78 in ²	Area:	1.00 cm ²	Area:	1.00 cm ²
Volume:	14.29 in ³		W		
Solid Volume:	0.86 in ³	l			

Average wa	iter temp.	24.3	C°	lni	itial	Fit	nal					
Initial		Final		l _o	E ₀	l,	E,	Temp.	Time	Average Flow, ∆Q	Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
\te	time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min.)	(cm ³)	(cm/sec)	(cm/sec)
2015	8:32:00	5/27/2015	9:19:00	10.00	10.00	14.58	5.40	23.7	47.00	4.59	1.422E-06	1.303E-06
5/27/2015	9:19:00	5/27/2015	9:56:00	14.58	5.40	17.35	2.70	23.9	37.00	2.74	1.076E-06	9.815E-07
5/27/2015	9:56:00	5/27/2015	10:31:00	17.35	2.70	19.50	0.68	23.5	35.00	2.09	8.673E-07	7.983E-07
5/27/2015	10:32:00	5/27/2015	11:37:00	5.00	20.00	9.30	15.70	23.5	65.00	4.30	9.632E-07	8.865E-07
5/27/2015	11:37:00	5/27/2015	12:19:00	9.30	15.70	11.50	13.53	23.8	42.00	2.19	7.574E-07	6.923E-07
5/27/2015	12:19:00	5/27/2015	14:19:00	11.50	13.53	16.00	9.18	23.7	120.00	4.43	5.369E-07	4.919E-07
5/27/2015	14:19:00	5/27/2015	14:58:00	16.00	9.18	17.80	8.01	23.9	39.00	1.49	5.544E-07	5.056E-07
5/27/2015	14:58:00	5/27/2015	15:48:00	17.80	8.01	19.10	6.70	23.7	50.00	1.31	3.800E-07	3.481E-07
5/28/2015	11:05:00	5/28/2015	11:32:00	8.00	24.00	8.96	23.17	24.7	27.00	0.90	4.826E-07	4.321E-07
5/28/2015	11:32:00	5/28/2015	12:00:00	8.96	23.17	9.68	22,44	24.6	28.00	0.73	3.770E-07	3.383E-07
5/28/2015	12:00:00	5/28/2015	12:30:00	9.68	22.44	10.50	21,61	24.6	30.00	0.83	4.004E-07	3.593E-07
5/28/2015	12:30:00	5/28/2015	13:00:00	10.50	21.61	11.21	20.91	25.0	30.00	0.71	3.422E-07	3.043E-07
5/28/2015	13:00:00	5/28/2015	13:30:00	11.21	20.91	11.94	20.26	25.1	30.00	0.69	3.349E-07	2.971E-07
5/28/2015	13:30:00	5/28/2015	14:06:00	11.94	20.26	12.76	19.43	24.8	36.00	0.83	3.337E-07	2.981E-07
5/28/2015	14:06:00	5/28/2015	14:34:00	12.76	19.43	13.36	18.80	24.8	28.00	0.61	3.198E-07	2.857E-07
5/28/2015	14:34:00	5/28/2015	15:04:00	13.36	18.80	14.00	18.27	24.8	30.00	0.59	2.839E-07	2.536E-07

Remarks: Sample was saturated to 96%, Deaired water was used. Micro-cracks were observed during preparation of specimen (see photos), that could have affected the hydraulic conductivity values. Liquid Limit = 66% Plastic Index = 42%

Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
3.188E-07	2.843E-07

Weighted Averages:


(cm/sec)

Tertad by: TP Date: 5/22/2015 SBM 5/29/2015 ed by: Date:

4.43 in³

Project:04.4015-1038

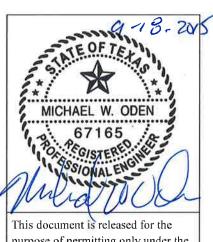
Pescadito Environmental Resource Center Photos of permeability sample

, Texas

ASTM D 4318 - Wet

Project No. 04.4015-1038

PLATE 1


PLASTICITY CF

FUGRO DATA TEMPLATE 100610.GDT FUGRO LIBRARY 052413.GLB INPROJECT FILESIPROJECTS.

5-1038 PESCADITO ENVIRONMENTAL RESOURCE CENTER/MISCI04.4015-1038.GPJ vargasm 6/2/15

S

III-E.5-G Subsurface Water Analytical Testing Results

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

July 29, 2010

Order No: 1007201

James Neyens TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

TEL: (512) 684-3156 FAX: (512) 329-8750

RE: Rancho Viejo

Dear James Neyens:

DHL Analytical received 5 sample(s) on 7/24/2010 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

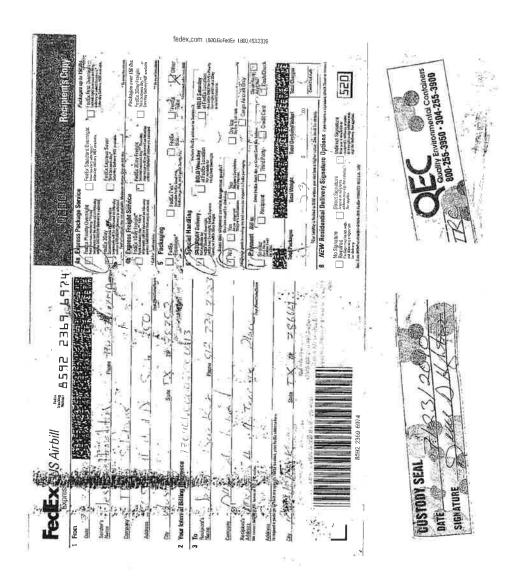
Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-10-3

Table of Contents

Miscellaneous Documents	3
Case Narrative	6
Sample Summary	7
Prep Dates Report	8
Analytical Dates Report	10
Sample Results	12
Analytical OC Summary Report	17


2300 Double-Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 45617 CHAIN-OF-CUSTODY

ADDRESS: 505 PHONE: (5/2) 32 DATA REPORTED TO: ADDITIONAL REPORT	5. 19- COPI	olutions Huntland 6080 F. ames F. ESTO:	AX/E-N	MAIL: _	sile 2	%*************************************	A	is Fin	2, 7	X 1875	PI PI C	O#: ROJE	CT L	7/3 OCAT	ION	OR N	ΛΑN	D D ME: D / F	HL V	VORI	CO	DER • LLEC	#:_ Vie	10		_OF <i>O</i>),20(
Authorize 5% surcharge for TRRP Report? Yes No Field Sample I.D.	A=A	VATER SL=!	SLUDG THER SOLID		Container Type	# of Containers	PRES	O NaOH D		٥	ANT SOL														FIEL	D NOTES	
	01	7/23/10	0845	W		2		1	X				I	П		X		XX			X	X		×A	NIONS	S = Chli	ride
B-IDUP	20	7/23/10				232	X	1	X			Ц				X		XX			ĮX,	X		Fluo	ride,	Sulfate	, '
	23	7/23/10					_ >	1	X		4	Ц	4	Н	_	ĮX,		$\times \times$	Ц	_	X	$\langle X \rangle$		and	l Ni	trate	
	PC	7/23/10				2	_X	1	X							X		$\times \times$		_	K						
B-10	05	7/23/10	1453	W)		2	×		X							X		$\times \times$			K	M				S = Chr	
			ļ																			Ш		Alv	minum	, Copp	er,
-						П																		Iron	. Ma	inganes	e,_
						П		T								Ţ					L			Silv	er, o	und Zi	rc
			1						П																		
								T																			
			i		-17,110	П	\top		П		T	П															
									П			П				T			П		T						
-					-	\Box	╅	1	П		1										1	П					
		-1				\Box	\top	1	\Box		1								\Box		\top	П					
OTAL		100 1000				\vdash	+	+	Н	\dashv	+	Н	_	\vdash	\dashv	1	Г		\neg	_	✝	П		7			_
ELINQUISHED BY: (Signature)	.5	Sed a	DATE/I	10 10	RECEIVE RECEIVE RECEIVE	84: IS 0 84: IS	ignatu Ignatu	(Pe)	W.	o Saci	ارد		RUS 1 D	RN AF	CALL	FIRS:	т		VINC	TEM	IP: _〔	2	<u> </u>	THERM		57_ □ NOT (JSED
ELINQUISHED BY: (Signature)	,		DATE/I	IME	RECEIVE	D 8Y: (S	ignatu	ue)						AY 🗖				D AP					9	CL.	ego		
		DHL DISPOS	AL@\$.	5.00 ead	h 🗆 F	leturn		1.					1	IER 🗆	-			□ HA)					

DHL Analytical Sample Receipt Checklist Client Name TRC Environmental Corp. Date Received: 7/24/2010 Work Order Number 1007201 Received by JB Reviewed by S 9-26-10 Carrier name: FedEx 1day Shipping container/cooler in good condition? Yes 🗸 No 🗌 Not Present Custody seals intact on shippping container/cooler? Yes 🗹 No 🗍 Not Present Custody seals intact on sample bottles? Yes 🗌 No 🗌 Not Present Chain of custody present? Yes 🗹 No 🗌 Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Yes 🗹 No 🗔 Yes 🗸 No 🗆 Samples in proper container/bottle? Sample containers Intact? No 🗆 Yes 🗹 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 All samples received within holding time? No 🔽 Container/Temp Blank temperature in compliance? Yes 🗹 No 🗌 1,2 °C Yes 🗌 No 🗍 Water - VOA vials have zero headspace? No VOA vials submitted 🗸 Water - pH acceptable upon receipt? Yes 🗸 No 🗀 Not Applicable Any No response must be detailed in the comments section below.

Client contacted TRC Date contacted: 1/24/12 Person contacted James

Contacted by: Joseph Regarding: Nitrate Hold Dime

Comments: Per James, proceed with analysis is

aware nitrate is out of hold time.

Page 1 of 1

DHL Analytical Date: 07/29/10

CLIENT:

TRC Environmental Corp.

Project: Lab Order: Rancho Viejo 1007201 **CASE NARRATIVE**

The samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method E300 - Anions Analysis Method M4500-H+ B (18th Edition) - pH of a Water Method M2540C (18th Edition) - TDS Analysis Method M2510 B (18th Edition) - Specific Conductance

LOG IN

Samples were received and log-in performed on 7/24/10. A total of 5 samples were received. For Nitrate-N analysis the samples arrived at DHL Analytical outside of HoldTime. Proceeded with analysis as per the client. All Nitrate-N results are flagged with a "C" to designate this.

METALS ANALYSIS

For Metals analysis all samples were diluted prior to analysis due to the nature of the samples (high salt content).

For Metals analysis performed on 7/28/10 the matrix spike and matrix spike duplicate recoveries were below control limits for a few analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 7/28/10 the RPD for the serial dilution was slightly above control limits for Iron and Zinc. These are flagged accordingly. The PDS was within control limits for these analytes. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis all samples were diluted prior to analysis due to the nature of the samples (high conductivity).

DHL Analytical Date: 07/29/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo

Work Order Sample Summary Lab Order: 1007201

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recv'd
1007201-01	B-1		07/23/10 08:45 AM	07/24/10
1007201-02	B-1 DUP		07/23/10 08:45 AM	07/24/10
1007201-03	B-6		07/23/10 09:53 AM	07/24/10
1007201-04	B-13		07/23/10 04:12 PM	07/24/10
1007201-05	B-10		07/23/10 02:53 PM	07/24/10

42155

07/26/10 12:00 PM

07/26/10 09:32 AM 42138 07/27/10 03:15 PM 42156

Conductivity Preparation

Anion Preparation

pH Preparation

M4500-H+B

Aqueous

Aqueous Aqueous

E300

E300

Aqueous Aqueous M2510 B

07/26/10 09:32 AM 42138 07/27/10 03:15 PM 42156 42163

07/27/10 08:58 AM

Aq Prep Metals: ICP-MS

SW3005A

E300

M2540C

TDS Preparation

Anion Preparation Anion Preparation

Conductivity Preparation

M2510 B

Aqueous Aqueous Aqueous Aqueous

07/23/10 08:45 AM 07/23/10 08:45 AM 07/23/10 09:53 AM

B-1 DUP

B-1 DUP

B-6

1007201-03A

B-6

1007201-03B

B-6 B-6 B-6 B-6 B-6

37/26/10 09:00 AM 42151 J7/26/10 09:00 AM 42151 07/26/10 09:00 AM 42151 42163

07/27/10 08:58 AM

Aq Prep Metals: ICP-MS

SW3005A

Aqueous

E300 E300 E300

Aqueous Aqueous

07/23/10 04:12 PM 07/23/10 04:12 PM

07/23/10 04:12 PM

B-13

1007201-04A

B-13 B-13 B-13

1007201-04B

M2540C

TDS Preparation

42155

07/26/10 12:00 PM

07/26/10 09:00 AM 42151

7/26/10 09:00 AM 42151 07/26/10 09:00 AM 42151

07/26/10 09:32 AM 42138 07/27/10 03:15 PM 42156 07/27/10 08:58 AM 42163

Aq Prep Metals : ICP-MS

SW3005A

07/23/10 02:53 PM

1007201-05A

M2540C

Conductivity Preparation

TDS Preparation

Anion Preparation

pH Preparation

M4500-H+B

Aqueous

Aqueous Aqueous Aqueous Aqueous

B-13 B-13 B-13 B-10

M2510 B

Anion Preparation Anion Preparation

DHL Analytical

Date: 07/29/10

TRC Environmental Corp.	ejo	
TRC Envi	Rancho Viejo	1007201
CLIENT:	Project:	I ah Order

Batch ID 42156 42155 07/27/10 08:58 AM 42163 07/26/10 09:00 AM 42151 07/26/10 12:00 PM 42155 17/26/10 09:00 AM 42151 07/26/10 09:00 AM 42151 07/26/10 09:32 AM 42138 07/27/10 08:58 AM 42163 07/26/10 09:00 AM 42151 07/26/10 09:00 AM 42151 07/26/10 09:00 AM 42151 07/27/10 03:15 PM 07/26/10 12:00 PM Prep Date PREP DATES REPORT Aq Prep Metals : ICP-MS Aq Prep Metals: ICP-MS Conductivity Preparation Anion Preparation Anion Preparation Anion Preparation Anion Preparation Anion Preparation Anion Preparation TDS Preparation pH Preparation pH Preparation Test Name M4500-H+B M4500-FI+ B **Test Number** SW3005A SW3005A M2510 B M2540C E300 E300 E300 E300 E300 Aqueous 07/23/10 08:45 AM 7/23/10 08:45 AM 37/23/10 08:45 AM 07/23/10 08:45 AM Collection Date Client Sample ID B-1 DUP B-I DUP B-1 DUP B-1 DUP B-1 DUP B-1 B-1 B-1 B-1 B-1 B-1 1007201-01B 1007201-01A 1007201-02B an Order 1007201-02A Sample ID

Date: 07/29710

_	Prep Date Batch ID	07/26/10 09:00 AM 42151
PREP DATES REPORT	Test Name	Anion Preparation
I	Test Number	E300
	Matrix	Aqueous
nental Corp.	Collection Date	07/23/10 02:53 PM
TRC Environmental Corp. Rancho Viejo 1007201	Client Sample ID	B-10
CLIENT: Project: Lab Order:	Sample ID	1007201-05B

07/26/10 12:00 PM 42155 07/26/10 09:32 AM 42138 07/27/10 03:15 PM 42156

Conductivity Preparation

TDS Preparation

Aqueous Aqueous

Anion Preparation

pH Preparation

M4500-H+ B M2510 B M2540C

E300

Aqueous Aqueous

07/23/10 02:53 PM 07/23/10 02:53 PM 07/23/10 02:53 PM 07/23/10 02:53 PM

B-10 B-10 B-10 B-10

07/26/10 09:00 AM 42151

Date: 07/29/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo
Lab Order: 1007201

ANALYTICAL DATES REPORT

Lab Order:	1007201							
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1007201-01A	B-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 02:01 PM	ICP-MS3_100728A
1007201-01B	B-1	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:01 AM	IC_100726A
	B-1	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 01:30 PM	IC_100726A
	B-1	Aqueous	E300	Anions by 1C method - Water	42151	1000	07/26/10 02:49 PM	IC_100726A
	B-1	Aqueous	M4500-H+ B	hH	42155	_	07/26/10 12:56 PM	TITRATOR 100726A
	B-1	Aqueous	M2510 B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-1	Aqueous	M2540C	Total Dissolved Solids	42156	-	07/27/10 04:15 PM	WC_100727B
1007201-02A	B-1 DUP	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:11 PM	ICP-MS3_100728A
1007201-02B	B-1 DUP	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:15 AM	IC_100726A
	B-1 DUP	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 01:45 PM	IC_100726A
	B-1 DUP	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 03:48 PM	IC_100726A
	B-1 DUP	Aqueous	M4500-H+ B	PH	42155	-	07/26/10 12:58 PM	TITRATOR_100726A
	B-I DUP	Aqueous	M2510 B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-1 DUP	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007201-03A	B-6	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	S	0?/28/10 01:16 PM	ICP-MS3_100728A
1007201-03B	B-6	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:30 AM	IC_100726A
	B-6	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 01:59 PM	IC_100726A
	B-6	Aqueons	E300	Anions by IC method - Water	42151	1000	07/26/10 04:02 PM	IC_100726A
	B-6	Aqueous	M4500-H+B	PH	42155	_	07/26/10 01:00 PM	TITRATOR_100726A
	B-6	Aqueous	M2510 B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-6	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007201-04A	B-13	Aqueous	SW6020	Trace Metals; ICP-MS - Water	42163	\$	07/28/10 01:22 PM	ICP-MS3_100728A
1007201-04B	B-13	Aqueous	E300	Anions by IC method - Water	42151	01	07/26/10 11:44 AM	IC_100726A
	B-13	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 02:13 PM	IC_100726A
	B-13	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 04:16 PM	IC_100726A
	B-13	Aqueous	M4500-H+B	Hd	42155	_	07/26/10 01:01 PM	TITRATOR 100726A
	B-13	Aqueous	M2510B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-13	Aqueous	M2540C	Total Dissolved Solids	42156	-	07/27/10 04:15 PM	WC_100727B
1007201-05A	B-10	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:27 PM	ICP-MS3_100728A

Date: 07/29710

EPORT	Run ID
ANALYTICAL DATES REPORT	Dilution Analysis Date
YTICAL 1	Dilution
ANAL	Batch ID
	Test Name
9.	Test Number Test Name
TRC Environmental Corp. Rancho Viejo 1007201	Matrix
TRC Environm Rancho Viejo 1007201	Client Sample ID
CLIENT: Project: Lab Order:	Sample ID

Sample ID	Client Sample ID	Matrix	Test Number Test Name	Test Name	Batch ID	Dilution	Dilution Analysis Date	Run ID
1007201-05B	B-10	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:58 AM	IC_100726A
	B-10	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 02:27 PM	IC_100726A
	B-10	Aqueous	M4500-H+B	Hd	42155	_	07/26/10 01:02 PM	TITRATOR_100726A
	B-10	Aqueous	M2510B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-10	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo **Project No:** 170401 P.13

Lab Order: 1007201

Client Sample ID: B-1

Lab ID: 1007201-01

Collection Date: 07/23/10 08:45 AM

Date: 07/29/10

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	SV	W6020					Analyst: KL
Aluminum	18,5	0.0500	0.150		mg/L	5	07/28/10 02:01 PM
Chromium	0.0319	0.0100	0.0300		mg/L	5	07/28/10 02:01 PM
Copper	0.0498	0.0100	0.0500	J	mg/L	5	07/28/10 02:01 PM
Iron	14.0	0.250	0.750		mg/L	5	07/28/10 02:01 PM
Manganese	3,67	0.0150	0.0500		mg/L	5	07/28/10 02:01 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 02:01 PM
Zinc	0.0650	0.0100	0.0250		mg/L	5	07/28/10 02:01 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	33900	300	1000		mg/L	1000	07/26/10 02:49 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/26/10 11:01 AM
Nitrate-N	ND	1.00	5.00	C	mg/L	10	07/26/10 11:01 AM
Sulfate	1810	100	300		mg/L	100	07/26/10 01:30 PM
pН	M	4500-H+ B					Analyst: JBC
рН	6.87	0	0		pH Units	1	07/26/10 12:56 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	106000	100	100		μιnhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	60900	200	200		mg/L	t	07/27/10 04:15 PM

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level	J	Analyte detected between MDL and RL
	В	Analyte detected in the associated Method Blank	MDL	Method Detection Limit
	C	Sample Result or QC discussed in the Case Narrative	N	Parameter not NELAC certified
	DF	Dilution Factor	ND	Not Detected at the Method Detection Lin
	Е	TPH pattern not Gas or Diesel Range Pattern	RL	Reporting Limit

Spike Recovery outside control limits

Page 12 of 26

CLIENT: Client Sample ID: B-1 DUP TRC Environmental Corp. Project: Rancho Viejo Lab ID: 1007201-02 Project No: 170401 P.13 Collection Date: 07/23/10 08:45 AM

Lab Order: 1007201 Matrix: Aqueous

Result	MDL	RL	Qual	Units	DF	Date Analyzed
SV	W6020					Analyst: KL
21.5	0.0500	0.150		mg/L	5	07/28/10 01:11 PM
0.0344	0.0100	0.0300		mg/L	5	07/28/10 01:11 PM
0.0578	0.0100	0.0500		mg/L	5	07/28/10 01:11 PM
16.3	0.250	0.750		mg/L	5	07/28/10 01:11 PM
4.02	0.0150	0.0500		mg/L	5	07/28/10 01:11 PM
ND	0.00500	0.0100		mg/L	5	07/28/10 01:11 PM
0.0611	0.0100	0.0250		mg/L	5	07/28/10 01:11 PM
E3	800					Analyst: JBC
33300	300	1000		mg/L	1000	07/26/10 03:48 PM
ND	1.00	4.00		mg/L	10	07/26/10 11:15 AM
ND	1.00	5.00	C	ing/L	10	07/26/10 11:15 AM
1700	100	300		mg/L	100	07/26/10 01:45 PM
M	4500-H+B					Analyst: JBC
7_04	0	0		pH Units	1	07/26/10 12:58 PM
M	2510 B					Analyst: SW
105000	100	100		μmhos/cm	10	07/26/10 10:05 AM
M	2540C					Analyst: SW
60700	200	200		ıng/L	t	07/27/10 04:15 PM
	21.5 0.0344 0.0578 16.3 4.02 ND 0.0611 E3 33300 ND ND 1700 M	SW6020 21,5 0,0500 0,0344 0,0100 0,0578 0,0100 16,3 0,250 4,02 0,0150 ND 0,00500 0,0611 0,0100 E300 33300 300 ND 1,00 ND 1,00 ND 1,00 1700 100 M4500-H+B 7,04 0 M2510 B 105000 100 M2540C	SW6020 21,5 0,0500 0,150 0,0344 0,0100 0,0300 0,0578 0,0100 0,0500 16.3 0,250 0,750 4,02 0,0150 0,0500 ND 0,00500 0,0100 0,0611 0,0100 0,0250 E300 33300 300 1000 ND 1,00 4,00 ND 1,00 4,00 ND 1,00 5,00 1700 100 300 M4500-H+B 7,04 0 0 M2510 B 105000 100 100 M2540C	SW6020 21.5	SW6020 21,5 0.0500 0.150 mg/L 0.0344 0.0100 0.0500 mg/L 0.0578 0.0100 0.0500 mg/L 16.3 0.250 0.750 mg/L 4.02 0.0150 0.0500 mg/L ND 0.00500 0.0100 mg/L 0.0611 0.0100 0.0250 mg/L E300 33300 300 1000 mg/L ND 1.00 4.00 mg/L ND 1.00 5.00 C mg/L 1700 100 300 mg/L mg/L M4500-H+B 7.04 0 0 pH Units M2510 B 105000 100 100 μmhos/cm	SW6020 21,5 0.0500 0.150 mg/L 5 0.0344 0.0100 0.0300 mg/L 5 0.0578 0.0100 0.0500 mg/L 5 16.3 0.250 0.750 mg/L 5 4.02 0.0150 0.0500 mg/L 5 ND 0.00500 0.0100 mg/L 5 0.0611 0.0100 0.0250 mg/L 5 E300 33300 300 1000 mg/L 1000 ND 1.00 4.00 mg/L 10 ND 1.00 5.00 C mg/L 10 ND 1.00 300 mg/L 10 M4500-H+ B 7.04 0 0 pH Units 1 M2510 B 105000 100 100 μmhos/cm 10 M2540C

С

Value exceeds TCLP Maximum Concentration Level В Analyte detected in the associated Method Blank

Sample Result or QC discussed in the Case Narrative DF Dilution Factor

Е TPH pattern not Gas or Diesel Range Pattern Analyte detected between MDL and RL

MDL Method Detection Limit Ν Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

Date: 07/29/10

RL Reporting Limit

S Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401 P.13 Lab Order: 1007201 Client Sample ID: B-6

Lab ID: 1007201-03 **Collection Date:** 07/23/10 09:53 AM

Date: 07/29/10

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	0.804	0.0500	0.150		mg/L	5	07/28/10 01:16 PM
Chromium	0.0105	0.0100	0,0300	J	mg/L	5	07/28/10 01:16 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:16 PM
Iron	0.770	0.250	0.750		mg/L	5	07/28/10 01:16 PM
Manganese	0.574	0.0150	0.0500		mg/L	5	07/28/10 01:16 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:16 PM
Zinc	0.0230	0.0100	0.0250	I	mg/L	5	07/28/10 01:16 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	22600	300	1000		ing/L	1000	07/26/10 04:02 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/26/10 11:30 AM
Nitrate-N	ND	1.00	5.00	C	ing/L	10	07/26/10 11:30 AM
Sulfate	3120	100	300		mg/L	100	07/26/10 01:59 PM
pН	M	4500-H+ B					Analyst: JBC
рН	6.95	0	0		pH Units	1	07/26/10 01:00 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	60300	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	34600	200	200		mg/L	1	07/27/10 04:15 PM

*	Value exceeds TCLP Maximum Concentration Level	J	Analyte detected between MDL and RL
В	Analyte detected in the associated Method Blank	MDL	Method Detection Limit
C	Sample Result or QC discussed in the Case Narrative	N	Parameter not NELAC certified
DF	Dilution Factor	ND	Not Detected at the Method Detection Limit
Е	TPH pattern not Gas or Diesel Range Pattern	RL	Reporting Limit
	B C DF	B Analyte detected in the associated Method Blank C Sample Result or QC discussed in the Case Narrative DF Dilution Factor	B Analyte detected in the associated Method Blank MDL C Sample Result or QC discussed in the Case Narrative N DF Dilution Factor ND

Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401 P.13 Lab Order: 1007201

Lab ID:

1007201-04 Collection Date: 07/23/10 04:12 PM

Date: 07/29/10

Matrix: Aqueous

Client Sample ID: B-13

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	SV	W6020					Analyst: KL
Aluminum	4.95	0.0500	0.150		mg/L	5	07/28/10 01:22 PM
Chromium	ND	0,0100	0.0300		mg/L	5	07/28/10 01:22 PM
Copper	0.0120	0.0100	0.0500	1	mg/L	5	07/28/10 01:22 PM
Iron	4.81	0,250	0.750		mg/L	5	07/28/10 01:22 PM
Manganese	2.21	0.0150	0.0500		mg/L	5	07/28/10 01:22 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:22 PM
Zine	0.0623	0.0100	0.0250		ing/L	5	07/28/10 01:22 PM
Anions by IC method - Water	E300						Analyst: JBC
Chloride	32900	300	1000		mg/L	1000	07/26/10 04:16 PM
Fluoride	ND	1,00	4.00		mg/L	10	07/26/10 11:44 AM
Nitrate-N	ND	1.00	5.00	C	mg/L	10	07/26/10 11:44 AM
Sulfate	1760	100	300		mg/L	100	07/26/10 02:13 PM
pH	M	4500-H+B					Analyst: JBC
рН	6.78	0	0		pH Units	1	07/26/10 01:01 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	97200	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	58700	200	200		mg/L	Ţ	07/27/10 04:15 PM

Ouali	fiers.

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

E TPH pattern not Gas or Diesel Range Pattern

Analyte detected between MDL and RL J

Method Detection Limit

Parameter not NELAC certified ND Not Detected at the Method Detection Limit

RL Reporting Limit

MDL

S Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo
Project No: 170401 P.13
Lab Order: 1007201

Client Sample ID: B-10

Lab ID: 1007201-05

Collection Date: 07/23/10 02:53 PM

Date: 07/29/10

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	3.99	0.0500	0.150		mg/L	5	07/28/10 01:27 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:27 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:27 PM
Iron	5.27	0.250	0.750		mg/L	5	07/28/10 01:27 PM
Manganese	0.858	0.0150	0.0500		mg/L	5	07/28/10 01:27 PM
Silver	ND	0,00500	0.0100		mg/L	5	07/28/10 01:27 PM
Zinc	0.0292	0.0100	0.0250		mg/L	5	07/28/10 01:27 PM
Anions by IC method - Water	E300						Analyst: JBC
Chloride	28700	300	1000		mg/L	1000	07/26/10 02:27 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/26/10 11:58 AM
Nitrate-N	ND	1.00	5.00	C	mg/L	10	07/26/10 11:58 AM
Sulfate	1200	10.0	30.0		mg/L	10	07/26/10 11:58 AM
pH	M	[4500-H+B					Analyst: JBC
pΗ	7.10	0	0		pH Units	1	07/26/10 01:02 PM
Specific Conductance	M	I2510 B		9			Analyst: SW
Specific Conductance	88100	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	[2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	51700	200	200		mg/L	1	07/27/10 04:15 PM

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level	J	Analyte detected between MDL and RL			
	В	Analyte detected in the associated Method Blank	MDL	Method Detection Limit			
	CT.						

C Sample Result or QC discussed in the Case Narrative N Parameter DF Dilution Factor ND Not Detect TPH pattern not Gas or Diesel Range Pattern RL Reporting I

N Parameter not NELAC certified
ND Not Detected at the Method Detection Limit

RL Reporting Limit
S Spike Recovery outside control limits

Page 16 of 26

CLIENT:

TRC Environmental Corp. 1007201

Work Order: Project:

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

Project.	Kancho vicjo				Kumb. 1CF-W55_100/26A							
Sample ID:	MB-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L	
SampType:	MBLK	Run ID:	ICP-MS3_	100728A	Analysis Date:		07/28/10 1	2:49 PM	Prep I	Date:	07/27/1	
Analyte		Result	RL =	SPK value	-		LowLimit	HighLimit	_			
Aluminum		ND	0.0300					-			•	
Chromium		ND	0.00600									
Copper		ND	0.0100									
Iron		ND	0.150									
Manganese		ND	0.0100									
Silver		ND	0.00200									
Zinc		ND	0.00500									
Sample ID:	LCS-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L	
SampType:	LCS	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 12	2:54 PM	Prep I	Date:	07/27/10	
Analyte	21	Result	RL	SPK value	Ref Val		LowLimit	HighLimit	-		Limit Qu	
Aluminum		5.05	0,0300	5.00	0	101	80	120			•	
Chromium		0.204	0.00600	0.200	0	102	80	120				
Copper		0.204	0.0100	0.200	0	102	80	120				
Iron		5:12	0.150	5.00	0	102	80	120				
Manganese		0.202	0.0100	0.200	0	101	80	120				
Silver		0.197	0.00200	0.200	0	98.7	80	120				
Zinc		0.200	0.00500	0.200	0	99.8	80	120				
Sample ID:	LCSD-42163	Batch ID:	42163				SW6020		Units:		mg/L	
SampType:	LCSD	Run ID:	ICP-MS3_1	00728A	Analysis l		07/28/10 01:00 PM		Prep Date:		07/27/10	
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD		imit Qua	
Aluminum		4.83	0.0300	5.00	0	96.5	80	120	4.50	15		
Chromium		0.196	0.00600	0.200	0	98.2	80	120	3.80	15		
Copper		0.195	0.0100	0.200	0	97.7	80	120	4.31	15		
Iron		4.85	0.150	5.00	0	97.1	80	120	5.26	15		
Manganese		0.195	0.0100	0.200	0	97.6	80	120	3.42	15		
Silver		0.192	0.00200	0.200	0	95.8	80	120	2.98	15		
Zinc		0.189	0.00500	0.200	0	94.4	80	120	5.56	15		
Sample ID:	1007201-01A SD	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L	
SampType:	SD	Run ID:	ICP-MS3_1	00728A	Analysis I	Date:	07/28/10 02		Prep D		07/27/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit		RPD L	imit Qua	
Aluminum		19.5	0.750	0	18.5				5.21	10		
Chromium	V	0	0.150	0	0.0319				0	10		
Copper		0.0534	0.250	0	0.0498				6.96	10		
Iron		16.0	3.75	0	14.0				13.8	10	R	
Manganese		3.98	0.250	0	3.67				8.03	10		
Silver		0	0.0500	0	0				0	10		
Zinc		0.0742	0.125	0	0.0650				13.1	10	R	
21110												
Sample ID:	1007201-01A PDS	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L	

	ъ,		ف	ŗ.
0	-	ı	G	•

В Analyte detected in the associated Method Blank DF

Dilution Factor

Analyte detected between MDL and RL MDL Method Detection Limit

Not Detected at the Method Detection Limit ND

RPD outside accepted control limits

RLReporting Limit

S Spike Recovery outside control limits J Analyte detected between SDL and RL

N Parameter not NELAC certified

CLIENT: Work Order: TRC Environmental Corp. 1007201

ANALYTICAL QC SUMMARY REPORT

Project:	Rancho Viejo							RunID: ICP-MS3_100728A				
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lin	nit Qual	
Aluminum		46.7	0.150	25.0	18.5	113	75	125				
Chromium		0.998	0.0300	1.00	0.0319	96.6	75	125				
Copper		1.01	0.0500	1.00	0.0498	95.8	75	125				
Iron		40.3	0.750	25.0	14.0	105	75	125				
Manganese		4.91	0.0500	1.00	3.67	124	75	125				
Silver		0.928	0.0100	1.00	0	92.8	75	125				
Zinc		0.946	0.0250	1.00	0.0650	88.0	75	125				
Sample ID:	1007201-01A MS	Batch ID:	42163 TestNo: SW6020			Units:	n	ng/L				
SampType:	MS	Run ID:	ICP-MS3_	100728A	Analysis l	Date:	07/28/10 02	2:17 PM	Prep D	ate: 0	7/27/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lin	nit Qual	
Aluminum		22.6	0.150	5.00	18.5	82.1	80	120				
Chromium		0.212	0.0300	0.200	0.0319	89.8	80	120				
Copper		0.236	0.0500	0.200	0.0498	92.9	80	120				
Iron		18.5	0.750	5.00	14.0	91.1	80	120				
Manganese		3.80	0.0500	0.200	3.67	65.8	80	120			S	
Silver		0.182	0.0100	0.200	0	91.1	80	120				
Zinc		0,230	0.0250	0.200	0.0650	82.3	80	120				
Sample ID:	1007201-01A MSD	Batch ID:	42163		TestNo:		SW6020		Units:	п	ng/L	
SampType:	MSD	Run ID:	ICP-MS3_1	100728A	Analysis l	Date:	07/28/10 02	2:23 PM	Prep D	ate: 0	7/27/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lin	nit Qual	
Aluminum		22.3	0.150	5.00	18.5	75.8	80	120	1.40	15	S	
Chromium		0.209	0.0300	0.200	0.0319	88.4	80	120	1.40	15		
Copper		0.226	0.0500	0.200	0.0498	88.2	80	120	4.09	15		
lron		17.8	0.750	5.00	14.0	77.3	80	120	3.79	15	S	
Manganese		3.71	0.0500	0.200	3.67	23.2	80	120	2.26	15	S	
Silver		0.179	0.0100	0.200	0	89.6	80	120	1.60	15		

Oualifiers:	

Zinc

Analyte detected in the associated Method Blank

0.226

0.0250

0.200

0.0650 80.3

В DF Dilution Factor

Analyte detected between MDL and RL

MDL Method Detection Limit

Not Detected at the Method Detection Limit

RPD outside accepted control limits

120

1.73

15

RL Reporting Limit

S Spike Recovery outside control limits

J Analyte detected between SDL and RL N Parameter not NELAC certified

Page 18 of 26

CLIENT: TRC Environmental Corp. 1007201

Work Order: Rancho Viejo Project:

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

										-	
Sample ID:	ICV1-100728	Batch ID:	R50539		TestNo:	TestNo:			Units:	mg/L	
SampType:	ICV	Run ID:	ICP-MS3_	100728A	Analysis l	Analysis Date:		1:02 AM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qu	
Aluminum		2.48	0.0300	2.50	0	99.2	90	110			
Chromium		0.0989	0.00600	0.100	0	98.9	90	110			
Copper		0.100	0.0100	0.100	0	100	90	110			
Íron		2.56	0.150	2.50	0	103	90	110			
Manganese		0.0988	0.0100	0.100	0	98.8	90	110			
Silver		0.0985	0.00200	0.100	0	98.5	90	110			
Zinc		0,101	0,00500	0.100	0	101	90	110			
Sample ID:	CCV1-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	100728A	Analysis Date:		07/28/10 12:21 PM		Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qu	
Aluminum		5.22	0.0300	5.00	0	104	90	110			
Chromium		0.205	0.00600	0.200	0	103	90	110			
Copper		0.205	0,0100	0.200	0	102	90	110			
Iron		5.12	0.150	5.00	0	102	90	110			
Manganese		0.205	0.0100	0.200	0	103	90	110			
Silver		0.207	0.00200	0.200	0	104	90	110			
Zinc		0.204	0.00500	0.200	0	102	90	110			
Sample ID:	CCV2-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	100728A	Analysis 1	Date:	07/28/10 02	2:28 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qu	
Aluminum		5.38	0.0300	5:00	0	108	90	110			
Chromium		0.202	0.00600	0.200	0	101	90	110			
Copper		0.208	0.0100	0.200	0	104	90	110			
Iron		5.16	0.150	5.00	0	103	90	110			
Manganese		0.199	0.0100	0.200	0	99.4	90	110			
Silver		0.205	0.00200	0.200	0	103	90	110			

Qualifiers:	В	Analyte detected in the associated Method Blank	
-	D-17	The state of the s	

DF Dilution Factor Analyte detected between MDL and RL

MDL Method Detection Limit Not Detected at the Method Detection Limit ND

R RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J Parameter not NELAC certified N

CLIENT: Work Order: Project:

TRC Environmental Corp. 1007201

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100726A

Sample ID:	LCS-42151	Batch ID:	42151		TestNo:		E300		Units:		mg/L	
SampType:	LCS	Run ID:	IC_100726	A	Analysis l	Date:	07/26/10 09	9:45 AM	Prep D	07/26/10		
Analyte		Result	RL	SPK value	Ref Val	%REC		HighLimit	%RPD	RPD 1	Limit Qua	
Chloride		9.51	1.00	10.00	0	95.1	90	110				
Fluoride		3.86	0.400	4.000	0	96.4	90	110				
Nitrate-N		4.90	0.500	5.000	0	98.1	90	110				
Sulfate		28.6	3.00	30.00	0	95.4	90	110				
Sample ID:	LCSD-42151	Batch ID:	42151		TestNo:		E300		Units:		mg/L	
SampType:	LCSD	Run ID:	IC_100726.	A	Analysis l		07/26/10 09	9:58 AM	Prep D	ate:	07/26/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD :	Limit Qua	
Chloride		9,53	1.00	10.00	0	95.3	90	110	0,177	20		
Fluoride		3.84	0.400	4.000	0	96.0	90	110	0.465	20		
Nitrate-N		4.93	0.500	5,000	0	98.6	90	110	0.604	20		
Sulfate		28.3	3.00	30.00	0	94.3	90	110	1.19	20		
Sample ID:	MB-42151	Batch ID:	42151		TestNo:		E300		Units:		mg/L	
SampType:	rpe: MBLK Run I		Run ID: IC_100726A			Date:	07/26/10 10):27 AM	Prep Date: 07/26/10			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD 1	Limit Qua	
Chloride		ND	1,00									
Fluoride		ND	0.400									
Nitrate-N		ND	0,500									
Sulfate		ND	3,00									
Sample ID:	1007201-05B MS	Batch ID:	42151		TestNo:		E300		Units:		mg/L	
SampType:	MS	Run ID:	IC_100726	A	Analysis 1	Date:	07/26/10 12	2:35 PM	Prep D	Pate:	07/26/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD :	Limit Qua	
Fluoride		39.7	4.00	40,00	0	99.2	90	110				
Nitrate-N		45.6	500	50.00	0	91.2	90	110				
Sulfate		1020	30.0	300.0	718.5	99.2	90	110				
Sample ID:	1007201-05B MSD	Batch ID:	42151		TestNo:		E300		Units:		mg/L	
SampType:	MSD	Run ID:	IC_100726	A	Analysis 1	Date:	07/26/10 0	1:16 PM	Prep I	Date:	07/26/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua	
Fluoride		40.6	4.00	40.00	0	101	90	110	2,25	20		
Nitrate-N		48.1	5.00	50.00	0	96.2	90	110	5.32	20		
Sulfate		1030	30.0	300.0	718.5	103	90	110	1.19	20		
Sample ID:	1007201-05B MS	Batch ID:	42151		TestNo:		E300		Units:		mg/L	
SampType:	MS	Run ID:	IC_100726	A	Analysis 1	Date:	07/26/10 03	3:04 PM	Prep I	Pate:	07/26/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua	
Chloride		26600	1000	10000	17200	93.5	90	110				
		Batch ID:	42151		TestNo:		E300		Units:		mg/L	
Sample ID:	1007201-05B MSD											
Sample ID:	1007201-05B MSD MSD	Run ID:	IC_100726	A	Analysis 1	Date:	07/26/10 03	3:17 PM	Prep I	ate:	07/26/10	
Sample ID: SampType: Analyte			IC_100726 RL	A SPK value	•	Date: %REC		3:17 PM HighLimit			07/26/10 Limit Qua	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor

Analyte detected between MDL and RL Method Detection Limit

MDL Not Detected at the Method Detection Limit R RPD outside accepted control limits

RL Reporting Limit S Spike Recovery outside control limits Analyte detected between SDL and RL J

Ν Parameter not NELAC certified

CLIENT:

TRC Environmental Corp. 1007201 Rancho Viejo

Work Order: 100720 Project: Rancho

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100726A

_										
Sample ID: SampType:	ICV-100726 Batch ID ICV Run ID:		R50483 IC_100726	TestNo: Analysis	Date:	E300 07/26/10 09	9:23 AM	Units: Prep D	mg/L Date: 07/26/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		24.6	1,00	25.00	0	98.5	90	110		
Fluoride		10.0	0.400	10.00	0	100	90	110		
Nitrate-N		12.6	0.500	12,50	0	101	90	110		
Sulfate		73.2	3.00	75.00	0	97.7	90	110		
Sample ID:	CCV1-100726	Batch ID:	R50483		TestNo:		E300		Units:	mg/L
SampType:	CCV	Run ID:	IC_100726	A	Analysis 1	Date:	07/26/10 12	2:18 PM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		10.2	1.00	10,00	0	102	90	110		
Fluoride		3.92	0.400	4.000	0	98.1	90	110		
Nitrate-N		4.98	0.500	5.000	0	99.5	90	110		
Sulfate		28.9	3.00	30.00	0	96.4	90	110		
Sample ID:	CCV2-100729	Batch ID:	R50483		TestNo:		E300		Units:	mg/L
SampType:	CCV	Run ID:	IC_100726	A	Analysis 1	Date:	07/26/10 03	3:31 PM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		9.82	1.00	10.00	0	98.2	90	110		
Fluoride		3.90	0.400	4.000	0	97.4	90	110		
Nitrate-N		5.00	0.500	5.000	0	100	90	110		
Sulfate		29.2	3,00	30.00	0	97.3	90	110		
Sample ID:	CCV3-100726	Batch ID:	R50483		TestNo:		E300		Units:	mg/L
SampType:	CCV	Run ID:	IC_100726	A	Analysis l	Date:	07/26/10 04	1:44 PM	Prep D	eate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		9.70	1.00	10.00	0	97.0	90	110		
Nitrate-N		4.99	0.500	5.000	0	99.8	90	110		

Qualifiers: B Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

MDI Method Detection Limit

ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits
J Analyte detected between SDL and RL

N Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007201 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100726A

Sample ID:	1007201-01B DUP	Batch ID:	42155		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	DUP	Run ID:	TITRATOR_100726A		Analysis l	Date:	07/26/10 12	2:57 PM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
pН		6.98	0	0	6.870				1.59	5

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

CLIENT: Work Order: TRC Environmental Corp. 1007201 Rancho Viejo

Project:

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100726A

Sample ID:	ICV-100726	Batch ID:	R50485		TestNo:		M4500-H+	_	Units:	pH Units
SampType:	ICV	Run ID:	TITRATOR	_100726A	Analysis l	Date:	07/26/10 12	2:55 PM	Prep Da	ate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
pН		9.99	0	10.00	0	99.9	99	101		
Sample ID:	CCV-100726	Batch ID:	R50485		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	CCV	Run ID:	TITRATOR	_100726A	Analysis l	Date:	07/26/10 01	1:03 PM	Prep Da	ate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
рН		7.01	0	7,000	0	100	97.1	102.9		

В Analyte detected in the associated Method Blank Qualifiers:

DF Dilution Factor

Analyte detected between MDL and RL MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits

Reporting Limit

RL

S Spike Recovery outside control limits Analyte detected between SDL and RL J

N Parameter not NELAC certified

CLIENT: Work Order: Project:

TRC Environmental Corp. 1007201 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100726A

Sample ID:	MB-42138	Batch ID:	42138		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	MBLK	Run ID:	WC_1007	26A	Analysis 1	Date:	07/26/10 1	0:05 AM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	luctance	ND	10,0							
Sample ID:	LCS-42138	Batch ID:	42138		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	LCS	Run ID:	WC_1007	26A	Analysis	Date:	07/26/10 1	0:05 AM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	luctance	1460	10.0	1413	0	103	95	105		
Sample ID:	1007201-01B - DUP	Batch ID:	42138		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	DUP	Run ID:	WC_1007	26A	Analysis 1	Date:	07/26/10 10	0:05 AM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	luctance	106000	100	0	106100			-	0.282	2

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

TRC Environmental Corp. 1007201 CLIENT:

Work Order: Project:

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100726A

Date: 07/29/10

Sample ID:	ICV-100726	Batch ID:	CONDW-7	//26/10	TestNo:		M2510 B		Units:	μmhos/cm
SampType:	ICV	Run ID:	WC_10072	Analysis 1	Date:	07/26/10 10	0:05 AM	Prep Da	rte: 07/26/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	ductance	12800	10.0	12880	0	99.6	95	105		
Sample ID:	CCV-100726	Batch ID:	CONDW-7	/26/10	TestNo:		M2510 B		Units:	μmhos/cm
SampType:	CCV	Run ID:	WC_10072	6A	Analysis	Date:	07/26/10 1	0:05 AM	Prep Da	ite: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	fuctance	12600	10.0	12880	0	98.1	95	105		

Analyte detected in the associated Method Blank Qualifiers: DF Dilution Factor Analyte detected between MDL and RL J

MDL Method Detection Limit ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits RL Reporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J Ν Parameter not NELAC certified

Page 25 of 26

CLIENT:

TRC Environmental Corp.

Work Order: Project:

1007201 Rancho Viejo

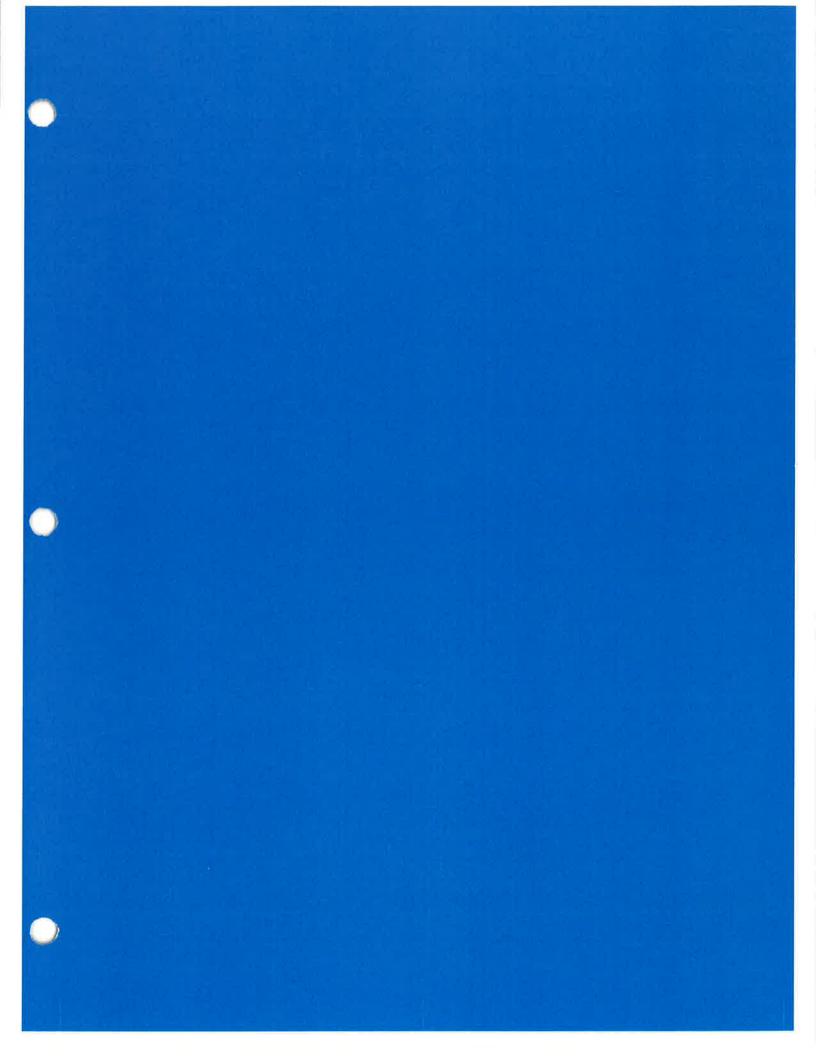
ANALYTICAL QC SUMMARY REPORT

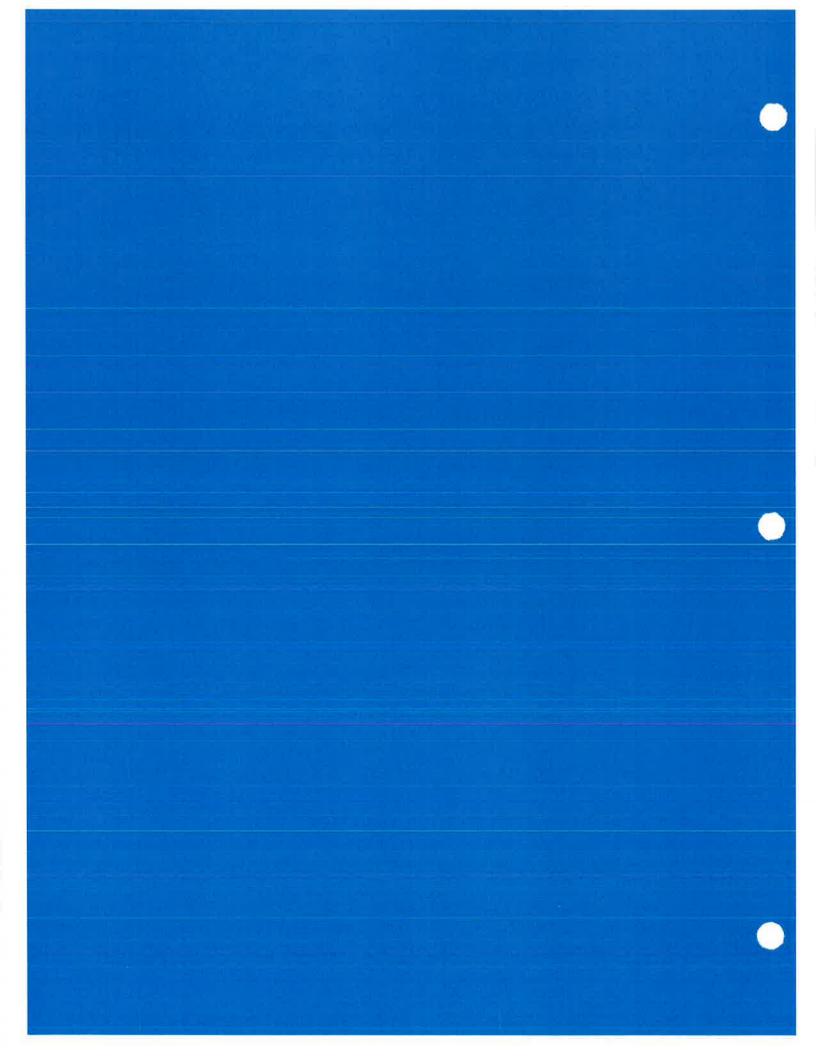
RunID: WC_100727B

•	•
Analyte Result RL SPK value Ref Val %REC LowLimit H	•
•	TILLY WANDED DEDICATE WAS A
77 - 175' 1 10 11 17 11 11 11 11 11 11 11 11 11 11 11	HighLimit %RPD RPD Limit Qual
Total Dissolved Solids (Residue, Fi ND 10.0	
Sample ID: LCS-42156 Batch ID: 42156 TestNo: M2540C	Units: mg/L
SampType: LCS Run ID: WC_100727B Analysis Date: 07/27/10 04:1	15 PM Prep Date: 07/27/10
Analyte Result RL SPK value Ref Val %REC LowLimit F	HighLimit %RPD RPD Limit Qual
Total Dissolved Solids (Residue, Fi 728 10.0 745.6 0 97.6 90 1	113
Sample ID: 1007188-01C-DUP Batch ID: 42156 TestNo: M2540C	Units: mg/L
SampType: DUP Run ID: WC_100727B Analysis Date: 07/27/10 04:1	15 PM Prep Date: 07/27/10
Analyte Result RL SPK value Ref Val %REC LowLimit I	HighLimit %RPD RPD Limit Qual
Total Dissolved Solids (Residue, Fi 1130 10.0 0 1111	1.61 5
Sample ID: 1007192-03C-DUP Batch ID: 42156 TestNo: M2540C	Units: mg/L
SampType: DUP Run ID: WC_100727B Analysis Date: 07/27/10 04:1	15 PM Prep Date: 07/27/10
	HighLimit %RPD RPD Limit Qual
Analyte Result RL SPK value Ref Val %REC LowLimit F	Thermit was a reprint of

Qualifiers:	В	Analyte detected in the associated Method Blank
-	DE	Diff of Eq. (

DF Dilution Factor
J Analyte detected between MDL and RL


MDL Method Detection Limit
ND Not Detected at the Method Detection Limit


R RPD outside accepted control limits

RL Reporting Limit
S Spike Recovery outside control limits
J Analyte detected between SDL and RI

J Analyte detected between SDL and RL N Parameter not NELAC certified

Page 26 of 26

August 03, 2010

Order No: 1007213

James Neyens TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

TEL: (512) 684-3156 FAX: (512) 329-8750

RE: Rancho Viejo

Dear James Neyens:

DHL Analytical received 3 sample(s) on 7/27/2010 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

Shad what

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-10-3

Table of Contents

Miscellaneous Documents	3
Case Narrative	5
Sample Summary	6
Prep Dates Report	7
Analytical Dates Report	8
Sample Results	9
Analytical QC Summary Report.	12

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 45618 CHAIN-OF-CUSTODY

CL. TR ADDRESS: CD5 PHONE: (572) C DATA REPORTED TO ADDITIONAL REPOR	E. H 329 -	intland C -6080 F Jan IES TO:	AX/E-	Swite MAIL:_	- 250 Jeyens	2	<i>A</i> 3,	is.H	1,1	<u>X</u>		PO #: PROJ	ECT I		ΠΟΝ	ORI	VAN	ΛΕ:_	DH	L WO	RK (ORD	ER#	liq	PAGE / OF / 1007213
Authorize 5% surcharge for TRRP Report? Yes No Field Sample I.D.	A=A	VATER SL= IR O=C QUID SO=	SLUDO THER SOLIC		Container Type	iners		SERV DHOPN D'OS'H			ANA														FIELD NOTES
Ranch Well	10	7/25/2010	[230	W		2	\supset	\langle	X			Í		ΪÍ	Í	X	Ĺ	X	XÍ	Í		X)	X	Í	*KANIONS = Chloride
8-18	2,0	7/25/2010		W		2		4	X							X		X_{i}	X			X	X.		Fluoride, Sulfate, and Nitrate.
13-2	03	7/25/2010	1630	W		2	-	4	X			+	4	H	+	X		X	4	+	H	XI)	X-		and Nitrate.
																									*METALS = Chromic Aluminum, Copper, Iron, Manganese, Silver, and Zhe
											<u> </u>							CT .							
OTAL		1 1																	I				I		
ELINQUISHED BY: (Signature	M.C	1	DATE		RECEIVE RECEIVE				اد	_		3	RU.	RN AI SH Q AY Q AY Q RMAL	CALI	FIRS	Т	CU	CEIVI STOI CARR	ATOR NG TE DY SEA LIER BI DELIV	EMP: ALS: ILL #	<u>.</u>	رحر BRO	_ '	THERM #: 57
		DHL DISPOS	AL@\$	5.00 eac	h 🗆 F	eturi	7	_						HER C		-100	-			DEL		ED			

Sample Receipt Checklist Client Name TRC Environmental Corp. Date Received: 7/27/2010 Work Order Number 1007213 Received by JB 7/27/10 Checklist completed by: Carrier name: Hand Delivered Yes 🗸 Shipping container/cooler in good condition? No 🗌 Not Present Yes 🗌 Custody seals intact on shippping container/cooler? No 🗔 Not Present 🗹 Custody seals intact on sample bottles? Yes 🔲 No 🗔 Not Present 😿 Yes 🗹 No 🗆 Chain of custody present? No 🗆 Chain of custody signed when rellnquished and received? Yes 🗹 Chain of custody agrees with sample tabels? Yes 🗸 No 🗌 Samples in proper container/bottle? No 🗀 Yes 🗹 Yes 🔽 Sample containers intact? No 🗌 Sufficient sample volume for indicated test? Yes 🗸 No 🗆 No 🗆 All samples received within holding time? Yes 🗹 Container/Terrip Blank temperature in compliance? Yes 🗹 No 🗆 Water - VOA vials have zero headspace? Yes 🗌 No 🗀 No VOA vials submitted Water - pH acceptable upon receipt? Yes 🗹 No L Not Applicable Adjusted? _____ ND Checked by Any No response must be detailed in the comments section below. Date contacted: Person contacted Conlacted by:

Page 1 of 1

Comments:

DHL Analytical Date: 08/03/10

CLIENT:

TRC Environmental Corp.

Project: Lab Order: Rancho Viejo 1007213 **CASE NARRATIVE**

The samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method E300 - Anions Analysis Method M4500-H+ B (18th Edition) - pH of a Water Method M2540C (18th Edition) - TDS Analysis Method M2510 B (18th Edition) - Specific Conductance

LOG IN

Samples were received and log-in performed on 7/27/10. A total of 3 samples were received. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis all samples were diluted prior to analysis due to the nature of the samples (high salt content).

For Metals analysis performed on 7/28/10 the matrix spike and matrix spike duplicate recoveries were below control limits for a few analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 7/28/10 the RPD for the serial dilution was slightly above control limits for Iron and Zinc. These are flagged accordingly. The PDS was within control limits for these analytes. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis samples B-18 and B-2 were diluted prior to analysis due to the nature of the samples (high conductivity).

CLIENT: Project: Lab Order:	TRC Environmental Corp. Rancho Viejo 1007213		Work Order Sample Summary	
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recv'd
1007213-01	Ranch Well		07/25/10 12:30 PM	07/27/10
1007213-02	B-18		07/25/10 02:50 PM	07/27/10
1007213-03	B-2		07/25/10 04:30 PM	07/27/10

al
tic
aly
E E
1
H

Date: 08/03710

	PREP DATES REPORT		
TRC Environmental Corp.	Rancho Viejo	1007213	
CLIENT:	Project:	Lab Order:	

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1007213-01A	Ranch Well	07/25/10 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	.M 42163
1007213-01B	Ranch Well	07/25/10 12:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	Ranch Well	07/25/10 12:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	Ranch Well	07/25/10 12:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	Ranch Well	07/25/10 12:30 PM	Aqueous	M4500-H+B	pH Preparation	07/27/10 12:30 PM	M 42183
	Ranch Well	07/25/10 12:30 PM	Aqueous	M2510 B	Conductivity Preparation	07/27/10 10:00 AM 42172	.M 42172
	Ranch Well	07/25/10 12:30 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM	M 42156
1007213-02A	B-18	07/25/10 02:50 PM	Aqueous	SW3005A	Aq Prep Metals: ICP-MS	07/27/10 08:58 AM 42163	.M 42163
1007213-02B	B-18	07/25/10 02:50 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	B-18	07/25/10 02:50 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	B-18	07/25/10 02:50 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	.M 42179
	B-18	07/25/10 02:50 PM	Aqueous	M4500-H+B	pH Preparation	07/27/10 12:30 PM 42183	M 42183
	B-18	07/25/10 02:50 PM	Aqueous	M2510 B	Conductivity Preparation	07/27/10 10:00 AM 42172	M 42172
	B-18	07/25/10 02:50 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	M 42156
1007213-03A	B-2	07/25/10 04:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	.M 42163
1007213-03B	B-2	07/25/10 04:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	B-2	07/25/10 04:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	M 42179
	B-2	07/25/10 04:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179	JM 42179
	B-2	07/25/10 04:30 PM	Aqueous	M4500-H+B	pH Preparation	07/27/10 12:30 PM 42183	M 42183
	B-2	07/25/10 04:30 PM	Aqueous	M2510 B	Conductivity Preparation	07/27/10 10:00 AM 42172	M 42172
	B-2	07/25/10 04:30 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	M 42156

Date: 08/03/10

CLIENT: Project: Lab Order:	TRC Envirom Rancho Viejo 1007213	TRC Environmental Corp. Rancho Viejo 1007213			ANALYI	ICAL I	ANALYTICAL DATES REPORT	ORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1007213-01A	Ranch Well	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	2	07/28/10 01:38 PM	ICP-MS3_100728A
1007213-01B	Ranch Well	Aqueous	E300	Anions by IC method - Water	42179	-	07/27/10 10:21 AM	IC_100727A
	Ranch Well	Aqueous	E300	Anions by IC method - Water	42179	10	07/27/10 11:23 AM	IC_100727A
	Ranch Well	Aqueous	E300	Anions by IC method - Water	42179	100	07/27/10 01:17 PM	IC_100727A
	Ranch Well	Aqueous	M4500-H+B	Hq	42183	_	07/27/10 01:03 PM	TITRATOR_100727A
	Ranch Well	Aqueous	M2510 B	Specific Conductance	42172	_	07/27/10 10:45 AM	WC_100727A
	Ranch Well	Aqueous	M2540C	Total Dissolved Solids	42156	-	07/27/10 04:15 PM	WC_100727B
1007213-02A	B-18	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01;44 PM	ICP-MS3_100728A
1007213-02B	B-18	Aqueous	E300	Anions by IC method - Water	42179	10	07/27/10 10:35 AM	IC_100727A
	B-18	Aqueous	E300	Anions by IC method - Water	42179	100	07/27/10 11:38 AM	IC_100727A
	B-18	Aqueous	E300	Anions by IC method - Water	42179	1000	07/27/10 01:58 PM	IC_100727A
	B-18	Aqueous	M4500-H+B	hq	42183	1	07/27/10 01:05 PM	TITRATOR_100727A
	B-18	Aqueous	M2510 B	Specific Conductance	42172	10	07/27/10 10:45 AM	WC_100727A
	B-18	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007213-03A	B-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:50 PM	ICP-MS3_100728A
1007213-03B	B-2	Aqueous	E300	Anions by IC method - Water	42179	10	07/27/10 10:50 AM	IC_100727A
	B-2	Aqueous	E300	Anions by IC method - Water	42179	100	07/27/10 11:52 AM	IC_100727A
	B-2	Aqueous	E300	Anions by IC method - Water	42179	1000	07/27/10 02:12 PM	IC_100727A
	B-2	Aqueous	M4500-H+B	Hd	42183		07/27/10 01:06 PM	TITRATOR_100727A
	B-2	Aqueous	M2510 B	Specific Conductance	42172	10	07/27/10 10:45 AM	WC_100727A
	B-2	Aqueous	M2540C	Total Dissolved Solids	42156	1	07/27/10 04:15 PM	WC_100727B

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401

Lab Order: 1007213

Client Sample ID: Ranch Well

Lab ID:

Collection Date:

1007213-01 07/25/10 12:30 PM

Date: 08/03/10

Matrix:

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	ND	0.0500	0.150		mg/L	5	07/28/10 01:38 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:38 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:38 PM
Iron	0.828	0.250	0.750		mg/L	5	07/28/10 01:38 PM
Manganese	0.0266	0.0150	0.0500	J	mg/L	5	07/28/10 01:38 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:38 PM
Zinc	ND	0.0100	0.0250		mg/L	5	07/28/10 01:38 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	712	30.0	100		mg/L	100	07/27/10 01:17 PM
Fluoride	1.14	0.100	0.400		mg/L	1	07/27/10 10:21 AM
Nitrate-N	ND	0.100	0.500		mg/L	1	07/27/10 10:21 AM
Sulfate	197	10.0	30.0		mg/L	10	07/27/10 11:23 AM
pН	M	4500-H+B					Analyst: JBC
pH	8.45	0	0		pH Units	1	07/27/10 01:03 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	3700	10.0	10.0		μmhos/cm	1	07/27/10 10:45 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	2100	10.0	10.0		mg/L	1	07/27/10 04:15 PM

_		_	
\sim	ıali	45	
V.A.	ип	пе	TN.

Value exceeds TCLP Maximum Concentration Level
 Analyte detected in the associated Method Blank
 Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

TPH pattern not Gas or Diesel Range Pattern

J Analyte detected between MDL and RL MDL Method Detection Limit

N Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RL Reporting Limit
S Spike Recovery outside control limits

Page 9 of 22

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo

Project No: 170401 Lab Order: 1007213 Client Sample ID: B-18

Lab ID:

1007213-02

Collection Date: Matrix:

07/25/10 02:50 PM Aqueous

Date: 08/03/10

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	1.96	0.0500	0.150		mg/L	5	07/28/10 01:44 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:44 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:44 PM
Iron	1.62	0.250	0.750		mg/L	5	07/28/10 01:44 PM
Manganese	0.524	0.0150	0.0500		mg/L	5	07/28/10 01:44 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:44 PM
Zinc	0.0123	0.0100	0.0250	J	mg/L	5	07/28/10 01:44 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	37800	300	1000		mg/L	1000	07/27/10 01:58 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/27/10 10:35 AM
Nitrate-N	14.3	1.00	5.00		mg/L	10	07/27/10 10:35 AM
Sulfate	2210	100	300		mg/L	100	07/27/10 11:38 AM
pH	M	4500-H+ B					Analyst: JBC
pH	7.08	0	0		pH Units	I	07/27/10 01:05 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	114000	100	100		μmhos/cm	10	07/27/10 10:45 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	66600	200	200		mg/L	1	07/27/10 04:15 PM

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank

C Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

Е TPH pattern not Gas or Diesel Range Pattern

Analyte detected between MDL and RL J

Method Detection Limit

MDL Ν Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RLReporting Limit

Spike Recovery outside control limits S

Date: 08/03/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401

Lab Order: 1007213

Client Sample ID: B-2

Lab ID:

1007213-03 Collection Date: 07/25/10 04:30 PM

Matrix:

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	SV	W6020					Analyst: KL
Aluminum	0.264	0.0500	0.150		mg/L	5	07/28/10 01:50 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:50 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:50 PM
Iron	0.318	0.250	0,750	J	mg/L	5	07/28/10 01:50 PM
Manganese	0.563	0.0150	0.0500		mg/L	5	07/28/10 01:50 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:50 PM
Zinc	0.0102	0.0100	0.0250	J	mg/L	5	07/28/10 01:50 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	36900	300	1000		mg/L	1000	07/27/10 02:12 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/27/10 10:50 AM
Nitrate-N	1.98	1.00	5.00	J	mg/L	10	07/27/10 10:50 AM
Sulfate	1980	100	300		mg/L	100	07/27/10 11:52 AM
рН	M	4500-H+ B					Analyst: JBC
pН	6.93	0	0		pH Units	1	07/27/10 01:06 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	114000	100	100		μmhos/cm	10	07/27/10 10:45 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	64000	200	200		mg/L	1	07/27/10 04:15 PM

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank

C Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

Е

TPH pattern not Gas or Diesel Range Pattern

Analyte detected between MDL and RL

Method Detection Limit

Parameter not NELAC certified

ND Not Detected at the Method Detection Limit RLReporting Limit

MDL

S Spike Recovery outside control limits Page 11 of 22

Date: 08/03/10

CLIENT: Work Order:

TRC Environmental Corp. 1007213

Project:

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

Sample ID:	MB-42163	Batch 1D:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	MBLK	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 1	2:49 PM	Prep I	Date:	07/27/
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Q
Aluminum		ND	0.0300								
Chromium		ND	0.00600								
Copper		ND	0.0100								
lron		ND	0.150								
Manganese		ND	0.0100								
Silver		ND	0.00200								
Zinc		ND	0.00500								
Sample ID:	LCS-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	LCS	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 12	2:54 PM	Prep I	Date:	07/27/
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Q
Aluminum		5.05	0.0300	5.00	0	101	80	120			
Chromium		0.204	0.00600	0.200	0	102	80	120			
Copper		0.204	0.0100	0.200	0	102	80	120			
lron		5.12	0.150	5.00	0	102	80	120			
Manganese		0.202	0.0100	0.200	0	101	80	120			
Silver		0.197	0.00200	0.200	0	98.7	80	120			
Zinc		0,200	0.00500	0.200	0	99.8	80	120			
Sample ID:	LCSD-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	LCSD	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 0	1:00 PM	Prep D	ate:	07/27/
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD		Limit Q
Aluminum		4.83	0.0300	5.00	0	96.5	80	120	4.50	15	· · · · · · ·
Chromium		0.196	0,00600	0.200	0	98.2	80	120	3.80	15	
Copper		0.195	0.0100	0.200	0	97.7	80	120	4.31	15	
Iron		4.85	0.150	5.00	0	97.1	80	120	5.26	15	
Manganese		0.195	0.0100	0.200	0	97.6	80	120	3.42	15	
Silver		0.192	0.00200	0.200	0	95.8	80	120	2.98	15	
Zinc		0.189	0.00500	0.200	0	94.4	80	120	5.56	15	
Sample ID:	1007201-01A SD	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	SD	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 02	2:06 PM	Prep D	ate:	07/27/
Analyte		Result	RL	SPK value		%REC		HighLimit			Limit Q
Aluminum		19.5	0.750	0	18.5	701020	COWEIIII	111611D111111	5.21	10	Dillin Q
Chromium		0	0.150	0	0.0319				0	10	
Copper		0.0534	0.250	0	0.0498				6.96	10	
lron		16.0	3.75	0	14.0				13.8	10	R
Manganese		3.98	0.250	0	3.67				8.03	10	IX.
Silver		0	0.0500	0	0				0	10	
Zinc		0.0742	0.125	0	0.0650				13.1	10	R
		0.0772	0.123	V	0.0050				13,1	10	К
Sample ID: SampType:	1007201-01A PDS PDS	Batch ID:	42163	1007284	TestNo:	Data	SW6020	1.12 DE 4	Units:		mg/L
Samp type.	LDS	Run 1D:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 02	2:12 PM	Prep D	rate:	07/27/

Qualifiers:

Analyte detected in the associated Method Blank

В DF Dilution Factor

Analyte detected between MDL and RL J

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits

RLReporting Limit

S Spike Recovery outside control limits J Analyte detected between SDL and RL

Ν Parameter not NELAC certified

J	CLIENT: Work Orde Project:	TRC Environi 1007213 Rancho Viejo	nental Co	rp.		ANAI	LYTIC	CAL QO		MAR D: ICP			
7	Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit	Qual
A	Aluminum		46.7	0.150	25.0	18.5	113	75	125				
(Chromium		0.998	0.0300	1.00	0.0319	96.6	75	125				*
(Соррег		1.01	0.0500	1.00	0.0498	95.8	75	125				
1	ron		40.3	0.750	25.0	14.0	105	75	125				
N	vlanganese		4.91	0.0500	1.00	3.67	124	75	125				
S	Silver		0.928	0.0100	1.00	0	92.8	75	125				
Z	Zinc		0.946	0.0250	1.00	0.0650	88.0	75	125				
S	Sample ID:	1007201-01A MS	Batch ID:	42163		TestNo:		SW6020		Units:		mg/	L
S	ampType:	MS	Run ID:	ICP-MS3_	100728A	Analysis l	Date:	07/28/10 02	2:17 PM	Prep D	Date:	07/2	7/10
Α	nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit	Qual
Α	Muminum		22.6	0.150	5.00	18.5	82.1	80	120				
C	Chromium		0.212	0.0300	0.200	0.0319	89.8	80	120				
C	Copper		0.236	0.0500	0.200	0.0498	92.9	80	120				
Ir	ron		18.5	0.750	5.00	14.0	91.1	80	120				
M	1anganese		3.80	0.0500	0.200	3.67	65.8	80	120				S
S	ilver		0.182	0.0100	0.200	0	91.1	80	120				
Z	inc		0.230	0.0250	0.200	0.0650	82.3	80	120				
S	ample ID:	1007201-01A MSD	Batch ID:	42163		TestNo:		SW6020		Units:		mg/I	_
Sa	ampType:	MSD	Run ID:	ICP-MS3_	100728A	Analysis I	Date:	07/28/10 02	2:23 PM	Prep D	ate:	07/2	7/10
A	nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD :	Limit	Qual
A	luminum		22.3	0.150	5.00	18.5	75.8	80	120	1.40	15		S
C	hromium		0.209	0.0300	0.200	0.0319	88.4	80	120	1.40	15		
C	opper		0.226	0.0500	0.200	0.0498	88.2	80	120	4.09	15		
lre	on		17.8	0.750	5.00	14.0	77.3	80	120	3.79	15		S
M	langanese		3.71	0.0500	0.200	3.67	23.2	80	120	2.26	15		S
Si	lver		0.179	0.0100	0.200	0	89.6	80	120	1.60	15		
Zi	inc		0.226	0.0250	0.200	0.0650	80.3	80	120	1.73	15		

Qual	ifiers:
	200-0-0-0

B Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits
J Analyte detected between SDL and RL

N Parameter not NELAC certified

Date: 08/03/10

CLIENT:

TRC Environmental Corp.

Work Order: Project: 1007213 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

Sample ID:	ICVI-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	n	ng/L
SampType:	ICV	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 11	1:02 AM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Aluminum		2.48	0.0300	2.50	0	99.2	90	110			
Chromium		0.0989	0.00600	0.100	0	98.9	90	110			
Copper		0.100	0.0100	0.100	0	100	90	110			
Iron		2.56	0.150	2.50	0	103	90	110			
Manganese		0.0988	0.0100	0.100	0	98.8	90	110			
Silver		0.0985	0.00200	0.100	0	98.5	90	110			
Zinc		0.101	0.00500	0.100	0	101	90	110			
Sample ID:	CCV1-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	п	ng/L
SampType:	CCV	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 12	2:21 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Aluminum		5.22	0.0300	5.00	0	104	90	110			
Chromium		0.205	0.00600	0.200	0	103	90	110			
Copper		0.205	0.0100	0.200	0	102	90	110			
lron		5.12	0.150	5.00	0	102	90	110			
Manganese		0.205	0.0100	0.200	0	103	90	110			
Silver		0.207	0.00200	0.200	0	104	90	110			
Zinc		0.204	0.00500	0.200	0	102	90	110			
Sample ID:	CCV2-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	п	ıg/L
SampType:	CCV	Run ID:	ICP-MS3	100728A	Analysis l	Date:	07/28/10 02	2:28 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Aluminum		5.38	0.0300	5.00	0	108	90	110			
Chromium		0.202	0.00600	0.200	0	101	90	110			
Copper		0.208	0.0100	0.200	0	104	90	110			
Iron		5.16	0.150	5.00	0	103	90	110			
Manganese		0.199	0.0100	0.200	0	99.4	90	110			
Silver		0.205	0.00200	0.200	0	103	90	110			
Zinc		0.200	0.00500	0.200	0	100	90	110			

Qualifiers:

B Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL MDL Method Detection Limit

ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits

J Analyte detected between SDL and RL

N Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp.

1007213 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100727A

Troject.	Rancho Viejo								J. 10_1		
Sample ID:	LCS-42179	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	LCS	Run ID:	IC_100727A	λ.	Analysis	Date:	07/27/10 09	9:37 AM	Prep I	Date:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		9.85	1.00	10.00	0	98.5	90	110			
Fluoride		3.95	0.400	4.000	0	98.7	90	110			
Nitrate-N		5.18	0.500	5.000	0	104	90	110			
Sulfate		29.5	3.00	30.00	0	98.4	90	110			
Sample ID:	LCSD-42179	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	LCSD	Run ID:	IC_100727A	A.	Analysis	Date:	07/27/10 09	9:51 AM	Prep I	Date:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		10.0	1.00	10.00	0	100	90	110	1.49	20	
Fluoride		3.98	0.400	4.000	0	99.6	90	110	0.918	20	
Nitrate-N		5.25	0.500	5.000	0	105	90	110	1.37	20	
Sulfate		30.3	3.00	30.00	0	101	90	110	2.77	20	
Sample ID:	MB-42179	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MBLK	Run ID:	IC_100727A	\	Analysis	Date:	07/27/10 10		Prep D	Date:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		ND	1.00								
Fluoride		ND	0.400								
Nitrate-N		ND	0.500								
Sulfate		ND	3.00								
Sample ID:	1007213-01B MS	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC_100727A	X.	Analysis l	Date:	07/27/10 12	2:20 PM	Prep D	ate:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Fluoride		4.43	0.400	4.000	0.6800	93.7	90	110			
Nitrate-N		4.83	0.500	5.000	0	96.7	90	110			
Sample ID:	1007213-01B MSD	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC_100727A	L	Analysis l	Date:	07/27/10 12	2:34 PM	Prep D	ate:	07/27/10
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD		Limit Qual
Fluoride		4.47	0.400	4.000	0.6800	94.6	90	110	0.834	20	
Nitrate-N		4.92	0.500	5.000	0	98.3	90	110	1.70	20	
Sample ID:	1007213-01B MS	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC_100727A		Analysis l		07/27/10 12		Ргер Г		07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Sulfate		426	30.0	300.0	118.5	103	90	110			
Sample ID:	1007213-01B MSD	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC_100727A	L.	Analysis l	Date:	07/27/10 01	:03 PM	Prep D		07/27/10
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD		Limit Qual
Sulfate		422	30.0	300.0	118.5	101	90	110	0.952	20	
Sample ID:	1007213-01B MS	Batch ID:	42179		TestNo:		E300		Units:		mg/L
ers: B DF	Analyte detected in the Dilution Factor	associated M	lethod Blank			R RL	RPD outsi	ide accepted	control li	mits	

Qualific

Analyte detected between MDL and RL

 MDL Method Detection Limit Not Detected at the Method Detection Limit Spike Recovery outside control limits

J Analyte detected between SDL and RL

Parameter not NELAC certified

Date: 08/03/10

CLIENT: Work Order: TRC Environmental Corp. 1007213

Work Orde Project:

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100727A

SampType:	MS	Run ID:	IC_100727A	-		Date:	07/27/10 01:31 PM		Prep Date:		07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	mit Qual
Chloride		1430	100	1000	427.0	100	90	110			
Sample ID:	1007213-01B MSD	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC_100727A	A	Analysis l	Date:	07/27/10 0	1:44 PM	Prep D	Date:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	mit Qual
Chloride		1430	100	1000	427.0	100	90	110	0	20	

_				
Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

Date: 08/03/10

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100727A

Sample ID:	ICV-100727	Batch ID:	R50502		TestNo:		E300		Units:	mg/L
SampType:	ICV	Run ID:	IC_100727A	λ	Analysis	Date:	07/27/10 09	9:20 AM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		25.8	1.00	25.00	0	103	90	110		
Fluoride		10.2	0.400	10.00	0	102	90	110		
Nitrate-N		13.3	0.500	12.50	0	106	90	110		
Sulfate		76.7	3.00	75.00	0	102	90	110		
Sample ID:	CCV1-100727	Batch ID:	R50502		TestNo:		E300		Units:	mg/L
SampType:	CCV	Run ID:	IC_100727A	١	Analysis	Date:	07/27/10 12	2:06 PM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		10.2	1.00	10.00	0	102	90	110		
Fluoride		3.96	0.400	4.000	0	99.0	90	110		
Nitrate-N		5.25	0.500	5.000	0	105	90	110		
Sulfate		30.2	3.00	30.00	0	101	90	110		
Sample ID:	CCV2-100727	Batch ID:	R50502		TestNo:		E300		Units:	mg/L
SampType:	CCV	Run ID:	IC_100727A	١	Analysis	Date:	07/27/10 02	2:40 PM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		10.1	1.00	10.00	0	101	90	110		
Fluoride		3.92	0.400	4.000	0	98.0	90	110		
Nitrate-N		5.26	0.500	5.000	0	105	90	110		
Sulfate		30.4	3.00	30.00	0	101	90	110		

Qualifiers:

Analyte detected in the associated Method Blank

DF Dilution Factor

Analyte detected between MDL and RL

MDL Method Detection Limit

Not Detected at the Method Detection Limit ND

RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J

N Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100727A

Date: 08/03/10

Sample ID:	1007213-01B DUP	Batch ID:	42183		TestNo:		M4500-H+	В	Units:	-	pH Units
SampType:	DUP	Run ID:	TITRATO	R_100727A	Analysis l	Date:	07/27/10 0	1:04 PM	Prep D	ate:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lit	nit Qual
pН		8.43	0	0	8.450				0.237	5	

-				
Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

Date: 08/03/10

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100727A

Sample ID:	ICV-100727	Batch ID:	R50506		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	ICV	Run ID:	TITRATOR	_100727A	Analysis 1	Date:	07/27/10 0	1:02 PM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
pН		9.99	0	10.00	0	99.9	99	101		
Sample ID:	CCV-100727	Batch ID:	R50506		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	CCV	Run ID:	TITRATOR	_100727A	Analysis	Date:	07/27/10 0	1:07 PM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
pН		7.01	0	7.000	0	100	97.1	102.9		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor

ND

Analyte detected between MDL and RL MDL

Method Detection Limit Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit

S Spike Recovery outside control limits J Analyte detected between SDL and RL N Parameter not NELAC certified

Date: 08/03/10

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727A

Sample ID:	MB-42172	Batch ID:	42172		TestNo:		M2510 B		Units:	μmhos/c
SampType:	MBLK	Run ID:	WC_1007	27A	Analysis	Date:	07/27/10 10	0:45 AM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua
Specific Cond	ductance	ND	10.0							
Sample ID:	LCS-42172	Batch ID:	42172		TestNo:		M2510 B		Units:	μmhos/o
SampType:	LCS	Run ID:	WC_1007	VC_100727A		Analysis Date:		07/27/10 10:45 AM		ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua
Specific Cond	ductance	1460	10.0	1413	0	104	95	105		
Sample ID:	1007213-01B-DUP	Batch ID:	42172		TestNo:		M2510 B		Units:	μmhos/o
SampType:	DUP	Run ID:	WC_1007	27 A	Analysis	Date:	07/27/10 1	0:45 AM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua
Specific Cone	ductance	3730	10.0	0	3700				0.808	2

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor

J Analyte detected between MDL and RL MDL Method Detection Limit

Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit Spike Recovery outside control limits S Analyte detected between SDL and RL J

N Parameter not NELAC certified

CLIENT: Work Order: TRC Environmental Corp. 1007213 Rancho Viejo

Project:

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727A

Date: 08/03/10

Sample ID:	ICV-100727	Batch ID:	CONDW-	7/27/10	TestNo:		M2510 B		Units:	μmhos/cm	
SampType:	ICV	Run ID:	WC_1007	27 A	Analysis 1	Date:	07/27/10 10):45 AM	Prep Da	ite: 07/27/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Specific Cond	uctance	12900	10.0	12880	0	99.9	95	105			
Sample ID:	CCV-100727	Batch ID:	CONDW-	7/27/10	TestNo:		M2510 B		Units:	μmhos/cm	
SampType:	CCV	Run ID:	WC_1007		Analysis l	Date:	07/27/10 10):45 AM	Prep Da		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Specific Cond	uctance	12800	10.0	12880	0	99.0	95	105			

Qualifiers:

Analyte detected in the associated Method Blank

В DF **Dilution Factor**

Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits

Reporting Limit

RL S Spike Recovery outside control limits J Analyte detected between SDL and RL

N Parameter not NELAC certified

Date: 08/03/10

CLIENT: Work Order:

Project:

TRC Environmental Corp.

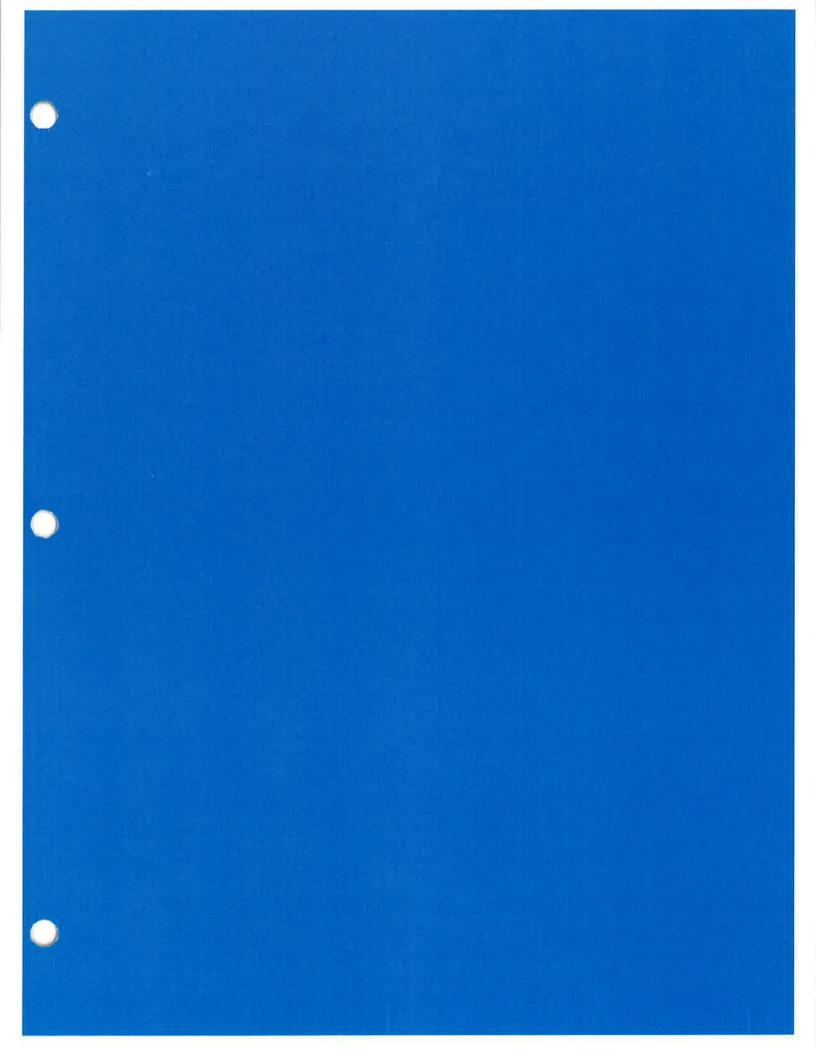
1007213 Rancho Viejo

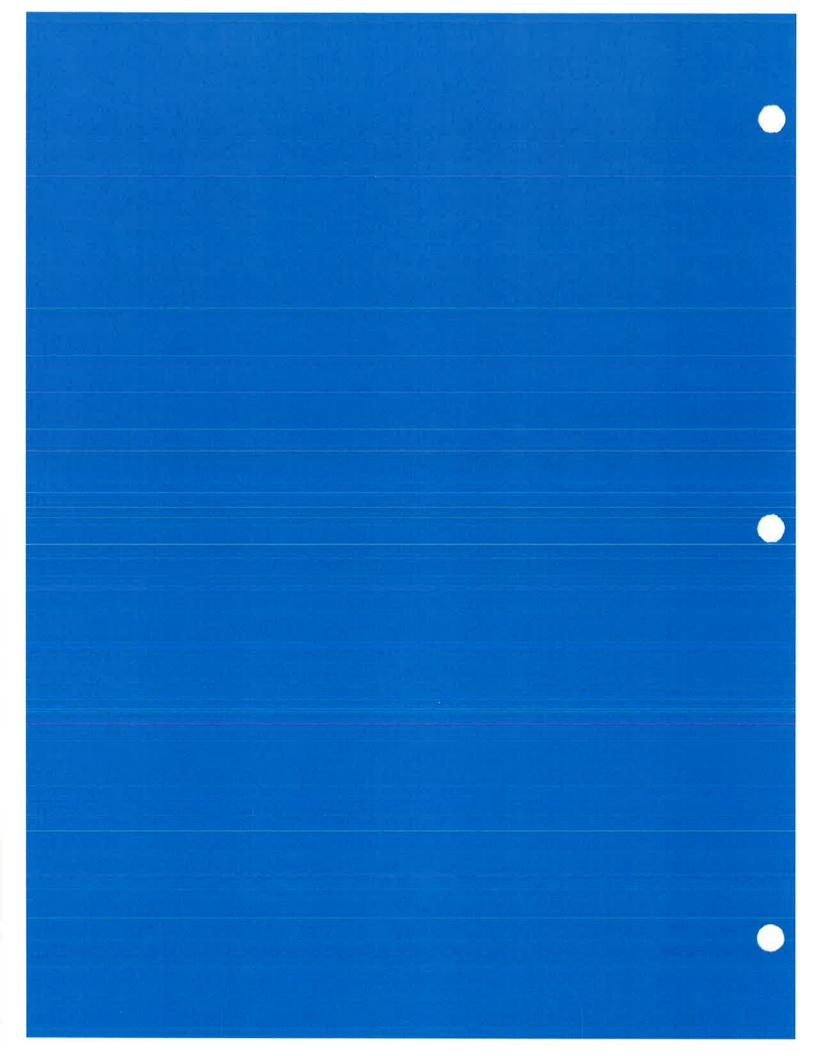
ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727B

Sample ID:	MB-42156	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	MBLK	Run ID:	WC_10072	7 B	Analysis I	Date:	07/27/10 04	1:15 PM	Ргер Д	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	ND	10.0							
Sample ID:	LCS-42156	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	LCS	Run ID:	WC_10072	7B	Analysis I	Date:	07/27/10 04	1:15 PM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	728	10.0	745.6	0	97.6	90	113		
Sample ID:	1007188-01C-DUP	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	DUP	Run ID:	WC_10072	7B	Analysis I	Date:	07/27/10 04	4:15 PM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	1130	0.01	0	1111				1.61	5
Sample ID:	1007192-03C-DUP	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	DUP	Run ID:	WC_10072	7B	Analysis I	Date:	07/27/10 04	1:15 PM	Ртер Г	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	633	10.0	0	623.0				1.59	5

Qualifiers: B Analyte detected in the associated Method Blank
DF Dilution Factor


J Analyte detected between MDL and RL


MDL Method Detection Limit
ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit
S Spike Recovery outside control limits
J Analyte detected between SDL and RL

N Parameter not NELAC certified

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-1

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 10:04

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry	Editor Co.							•	
Fluoride *	<0,100	mg/L	0.100		B114004	03/26/11	300.0	AK	-
Chloride *	31800	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	14.0	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1500	mg/L	25.0		B114131	04/01/11	300,0	AK	
Specific conductance *	82400	umhos/cm	1.00		B114037	03/25/11	SM2510B		
pH *	7.37	pH Units	0.05		B114036	03/25/11	SM4500HB		Н
Temperature	12	°F	1.0		B114036	03/25/11	170,1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-2

Sample Matrix: Liquid

Sampling Method: Grab
Date/Fime Collected: 03/24/11 09:55

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry									
Fluoride *	< 0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	29400	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	10.3	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1900	mg/L	50.0		B114131	04/01/11	300.0	AK	
Specific conductance *	80600	umhos/cm	1.00		B114037	03/25/[]	SM2510B	AK	
pH *	7.08	pH Units	0.05		B114036	03/25/11	SM4500HB		н
Temperature	11	°F	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-6

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 10:20

Lab Sample ID #: 1103321-03

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry								v	
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	17600	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	3.35	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	2520	ing/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	55100	umhos/cm	1,00		B114037	03/25/11	SM2510B	AK	
pH *	7.02	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	н
Temperature	11	°F	1.0		B114036	03/25/11	170.1	AK	н

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-10

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 10:10

Lab	Sample	ID#	1103321-04

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed 1	Method	Analyst	Notes
DRAFT: General Chemistry				• • • • • • • • • • • • • • • • • • • •		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, willing St	110163
Fluoride *	< 0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	30800	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	ILI	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1250	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	76500	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.21	pH Units	0.05		B114036	03/25/11	SM4500HE	AK	н
Temperature	11	°F	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar

Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-11

Sampling Method: Grab

Lab Sample ID #: 1103321-05

Sample Matrix: Liquid			Date	Time Collected: 03/24/11	10:25				
Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry	100.0000			V800-20					
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300,0	AK	
Chloride *	12000	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	16.7	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1860	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	54800	umhos/cm	1.00		B114037	03/25/11	SM2510B	ΛK	
pH *	7.00	pH Units	0.05		B114036	03/25/11	SM4500HB	AK.	Н
Temperature	11	۰F	0.1		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-13

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:47

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry				F			······································	ZKIIRIJSE	INUCCS
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	30800	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	13.4	mg/L	0.50		B114004	03/26/11	300,0	AK	
Sulfate *	1650	nig/L	1000		B114131	04/01/11	300.0	AK	
Specific conductance *	81400	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	6.98	pH Units	0.05		B114036	03/25/11	SM4500HB		Н
Temperature	10	°F	0.1		B114036	03/25/11	170.1	AK	н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #; DRAFT; B-18

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:25

Lab Sample ID #: 1103321-07

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry	411/								
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	31000	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	11.4	mg/L	0,50		B114004	03/26/11	300.0	AK	
Sulfate *	1660	ing/L	1000		B114131	04/01/11	300.0	AK	
Specific conductance *	84000	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.16	pH Units	0.05		B114036	03/25/11	SM4500HE	AK.	н
Temperature	9.6	۰F	1.0		B114036	03/25/11	170.1	AK	Ħ

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-24

Sample Matrix: Liquid

Sampling Method: Grab
Date/Time Collected: 03/24/11 09:17

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry				•					110103
Fluoride *	<0.100	ing/L	0.100	- Allendaria	B114004	03/26/11	300.0	AK	-
Chloride *	14600	mg/L	1000		B114131	04/01/11	300,0	AK	
Nitrate as N *	15.7	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	0011	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	54600	unthos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	6.91	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	Н
Temperature	9.9	۰F	1.0		B114036	03/25/11	170.1	AK	н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-26

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:06

Lab Sample ID #: 1103321-09

Analyte	Result	Units	PQL	Prep Mcthod	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry			207241=					-	
Fluoride *	<0.100	ing/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	29300	mg/L	1000		B114131	04/01/11	300,0	AK	
Nitrate as N *	10.8	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1320	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	84100	umhos/cm	1.00		B114037	03/25/11	SM2510B	٨K	
pH *	7.14	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	H
Temperature	9.2	°F	1_0		B114036	03/25/11	170.1	ΛK	H

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-27

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 08:55

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry						,	Travellots	*KIIIII JSK	110163
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	27700	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	7.63	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1330	mg/L	500		B114131	04/01/11	300 0	AK	
Specific conductance *	70700	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
рН *	7.08	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	Н
Temperature	8.8	٥Ŀ	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Sample Matrix: Liquid

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: T-1 (Burrito Tank)

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:32

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry		0.0000000							
Fluoride *	<0.100	mg/L	0.100	***************************************	B114004	03/26/11	300.0	AK	
Chloride *	271	mg/L	10.0		B114131	04/01/11	300.0	AK	
Nitrate as N *	< 0.50	nig/L	0.50		B114004	03/26/11	300,0	AK	
Sulfate *	11.0	mg/L	0.50		B114004	03/26/11	300.0	AK	
Specific conductance *	1520	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.28	pH Units	0.05		B114036	03/25/11	SM4500HB	AK.	н
Temperature	9.8	۰ŀ	1.0		B114036	03/25/11	170.1	AK	н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: T-2

Sample Matrix: Liquid

Sampling Method: Grab
Date/Time Collected: 03/24/11 09:39

Analyte	Result	Units	PQI,	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry						•			110163
Fluoride *	0.387	mg/L	0.100		B114004	03/26/11	300 0	AK	
Chloride *	82.2	nig/L	10.0		B114131	04/01/11	300.0	AK	
Nitrate as N *	<0,50	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	13.7	mg/L	0.50		B114004	03/26/11	300.0	AK	
Specific conductance *	1040	umhos/cin	1,00		B114037	03/25/11	SM2510B	AK	
pH *	8.02	pH Units	0,05		B114036	03/25/11	SM4500HB		Н
Temperature	11	o F	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

DRAFT: General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B114004 - NO PREP								****		
DRAFT: Blank (B114004-BLK1)				Prepared: 0	3/25/11 09:	53 Analya	zed: 03/26/)	11 02:25		
luoride	<0.100	0,100	mg/L				-2.	- 7		
Vitrate as N	<0.50	0.50	mg/L							
Sulfate	< 0.50	0.50	mg/L							
ORAFT: Blank (B114004-BLK2)				Prepared: 0	3/25/11 09:	53 Analyz	zed: 03/26/1	1 02:25		
luoride	<0.100	0.100	mg/L							
litrate as N	<0.50	0,50	mg/L							
iulfate	<0_50	0.50	nıg/L							
)R Blank (B114004-BLK3)		020		Prepared: 0	3/25/11 09::	53 Analyz	ed: 03/26/1	1 02:25		
luoride	<0.100	0.100	mg/L	-				0116	770 28	
litrate as N	<0,50	0,50	mg/L							
ulfate	<0.50	0,50	nig/L							
)RAFT: LCS (B114004-BS1)				Prepared: 0	3/25/11 09:	53 Analyz	red: 03/26/1	1 02:25		
Inoride	0.921	0.100	mg/L	1.00		92	90-110			
litrate as N	4,81	0,50	mg/L	5,00		96	90-110			
ulfate	5.22	0,50	mg/L	5.00		104	90-110			
PRAFT: LCS (B114004-BS2)				Prepared: 03	3/25/11 09:5	53 Analyz	ed: 03/26/1	1 02:25		
luoride	0.992	0.100	nig/I.	1.00		99	90-110	-		
litrate as N	4,95	0.50	mg/L	5.00		99	90-110			
ulfate	5.38	0.50	mg/L	5.00		108	90-110			
RAFT: LCS (B114004-BS3)				Prepared: 03	3/25/11 09:5	3 Analyz	ed: 03/26/1	1 02:25		
luoride	0,957	0.100	uig/L	1.00		96	90-110			
îlrate as N	4.68	0,50	mg/L	5.00		94	90-110			CCVL
ulfate	5.16	0.50	mg/L	5.00		103	90-110			00712
RAFT: LCS Dup (B114004-BSD1)				Prepared; 03	/25/11 09:5	3 Analyze	ed: 03/26/11	02:25		
hioride	0,915	0.100	my/L	1.00		92	90-110	0.7	20	-
itrate as N	4.78	0,50	mg/L	5.00		96	90-110	0.6	20	
ılfate	5.21	0.50	mg/L	5.00		104	90-110	0.2	20	
RAFT: LCS Dup (B114004-BSD2)				Prepared: 03	/25/11 09:5	3 Analyze				
uoride	0.986	0.100	mg/L	1.00	-	99	90-110	0,6	20	
itrate as N	5.02	0,50	nig/L	5.00		100	90-110	1	20	
ılfate	5.36	0.50	mg/L	5.00		107	90-110	0.4	20	
RA LCS Dup (B114004-BSD3)			-	Prepared: 03	/25/11 09:51	3 Analyze				
Con Day (Brander Bobb)	- W-1900 - 19			. repared, 05	23/11 02.3.	Anaryze	u. 03/40/11	UZ.ZJ		

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

DRAFT: General Chemistry - Quality Control

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
3atch B114004 - NO PREP			-	***						
DRAFT: LCS Dup (B114004-BSD3)				Prepared:	03/25/11 09:	53 Analya	zed: 03/26/1	1 02:25		
luoride	0_933	0.100	mg/L	1.00	****	93	90-110	3	20	
litrate as N	4.62	0,50	mg/L	5.00		92	90-110	1	20	
hilfate	4.96	0.50	mg/L	5.00		99	90-110	4	20	
ORAFT: Duplicate (B114004-DUP2)		Source: 1103321	1-04	Prepared:	03/25/11 09:	53 Analyz	zed: 03/26/1	1 02:25		
luoride	<0.100	0_100	ing/L		<0.100				20	
litrate as N	12.0	0.50	mg/L		11.1			8	20	
ORAFT: Duplicate (B114004-DUP3)		Source: 1103321	I-10	Prepared:	03/25/11 09:	53 Analyz	ted: 03/26/I	1 02:25		
luoride	<0.100	0.100	nig/L		<0.100				20	
litrate as N	7.85	0,50	mg/L		7.63			3	20	
Batch B114036 - NO PREP										7.7
PRAFT: LCS (B114036-BS1)				Prepared: (03/25/11 14:0	20 Analyz	ed: 03/25/1	1 14:20		
Н	4.06	0.05	pH Units	4.00		102	80-120			-
RAFT: LCS (B114036-BS2)				Prepared: (03/25/11 14:2	20 Analyz		1 14:20		
H	4.09	0.05	pH Units	4,00		f02	80-120			-
RAFT: Duplicate (B114036-DUP1)		Source: 1103321	-01	Prepared: (03/25/11 14:2	20 Analyz	ed: 03/25/11	14:20		
н	7,43	0,05	pH Units		7,37			0.8	20	100
emperature	12.0	1.0	۰F		[2.]			0.8	30	
RAFT: Duplicate (B114036-DUP2)		Source: 1103321	-11	Prepared: 0	03/25/11 14:2	20 Analyz	ed: 03/25/11			
4	7.30	0.05	pH Units		7.28		-	0.3	20	- 174
emperature	9,70	1.0	۰F		9.80			1	30	
atch B114037 - NO PREP										
RAFT: LCS (B114037-BS1)				Prepared: 0	3/25/11 14:2	0 Analyze	ed: 03/25/11	14:20		
secific conductance	993	1.00	umlios/cm	1000	-	99	80-120	146.0		
RAFT: LCS (B114037-BS2)				Prepared: 0	3/25/11 14:2	0 Analyze		14:20		
pecific conductance	997	1,00	umhos/cm	1000		100	80-120			
RAFT: Duplicate (B114037-DUP1)	15818	Source: 1103321-	-01	Prepared: 0	3/25/11 14:20	0 Analyze	d: 03/25/11	14:20		
secific conductance	82800	00.1	umhos/cm	0.0	82400			0.5	20	
RAFT: Duplicate (B114037-DUP2)	110	Source: 1103321-	11	Prepared: 0	3/25/11 14:20	0 Analyze	d: 03/25/11	14:20		
ecific conductance	1520	1.00	umhos/cm		1520			0.3	20	

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Vicjo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

DRAFT: General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B114131 - NO PREP	70-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1									3.5
DRAFT: Blank (B114131-BLK1)				Prepared: (03/31/11 15:	14 Analyz	zed: 04/01/1	1 01:40	7/100	
Chloride	<1.00	1,00	mg/L		- 7		100			
Sulfate	<0.50	0,50	mg/L							
DRAFT: Blank (B114131-BLK2)				Prepared: 0	03/31/11 15:	l4 Analyz	sed: 04/01/1	1 01:40		
Chloride	<1.00	1.00	mg/L							
Sulfate	<0.50	0.50	mg/L							
DRAFT: LCS (B114131-BS1)				Prepared: 0	3/31/11 15:	14 Analyz	ted: 04/01/1	1 01:40	- 200	
Chlorida	5.19	1,00	mg/L	5,00		104	90-110			
Sulf	5.36	0.50	mg/L	5,00		107	90-110			
DRAFT: LCS (B114131-BS2)				Prepared: 0	3/31/11 15:1	4 Analyz	ed: 04/01/1	1 01:40		
Chloride	4,97	1.00	mg/L	5.00		99	90-110			
Sulfate	5,12	0,50	nig/L	5,00		102	90-110			
DRAFT: LCS Dup (B114131-BSD1)				Prepared: 0	3/31/11 15:1	4 Analyz	ed: 04/01/1	1 01:40		
Chloride	5.21	1.00	nig/L	5,00		104	90-110	0.4	20	
Sulfate	5.30	0.50	mg/L	5.00		106	90-110	1	20	
DRAFT: LCS Dup (B114131-BSD2)				Prepared: 0	3/31/11 1 <i>5</i> :1	4 Analyz	ed: 04/01/1	1 01:40		
Chloride	5.02	1.00	nig/L	5,00		100	90-110	1	20	
Sulfate	5 13	0.50	mg/L	5.00		103	90-110	0.2	20	
DRAFT: Duplicate (B114131-DUP1)		Source: 1103321-0	18	Prepared: 0	3/31/11 15:1	4 Analyze	ed: 04/01/11	01:40		
Chloride	13900	1000	mg/L		14600		11.00	5	20	
Sulfate	1030	500	mg/L		1100			7	20	
DRAFT: Duplicate (B114131-DUP2)		Source: 1103321-1	2	Prepared: 03	3/31/11 [5:1	4 Analyzo	ed: 04/01/11	01:40		
Chloride	91.3	10.0	nig/L	8	32.2			10	20	
ulfate	13.6	5,00	mg/L	1	12.7			7	20	

Definitions and Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar

Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Н

pH and temperature are field tests and should be analyzed within 15 minutes. Due to transportation, hold time has been exceeded

CCVL

CCV recovery is outside QC limits, the results may have a slight low bias.

PQL

mg/Kg

Practical Quantitation Limit Milligrams per Kilogram (Parts per Million)

Milligrams per Liter (Parts per Million)

mg/L PPM

Parts per Million

NELAC accredited analyte

RMCCL

Recommended Maximum Concentration of Contaminants Level

Test Methods

Standard Methods for the Examination of Water and Wastewater, 20th Edition 1998

Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Rev. March 1983

EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

DRAFT REPORT, DATA SUBJECT TO CHANGE For

The results in this report apply to the samplex analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Richard Hawk, General Manager

P.O.#	REPOI WBER	162501	FAX#	EMAIL FKIST O FKC: SW	U SAME DAY WHEN POSSIBLE			_	PRESERVED WITH W
INVOICE TO:	COMPANY TRC Environmental Cott.		STATE TX 78752	Mayer 3 (512) 684-3156	고 2 Business Days	178 # Standard A-K 5-day TAT	S NO IF NO, SIGN HERE TO AUTHORIZE ANALYSIS	ANALYSIS REQUEST	1000 700 144 (0000) 1000 (0000
REPORT TO:	COMPANY Raba-Kistnet	ADDRESS 12821 N. Golden L.N.	542	PHONE # 619 - 9090	IME 2 7-10 Business Days	THAP 13 REQUEST 3 YES NO COMMENTS/SPECIAL REQUESTS: * SASA day d	SAMPLE TEMPERATURE WITHIN COMPLANCE (> 0°C ≤ 6°C) ★ ES PROPER CONTAINERS.	Tallwist Doll	SAMPLE SA
	OINDINE NE	FESTING LABORATORY, INC.	1610 S. Lavedo Street, San Antonio, Texas 78207 (210) 229-8920 • Fax (210) 229-8927	www.satestinglab.com	PROJECT NAME/LOCATION/SITE	Rancthe Vie ja, Mabb Co., TX	PROJECT NO. ASF09-192-01	SAMPLED BY SAFFLING	COLLECTED ANN AND THE REPARENCE THE

		1 1 1 1 1 1 1 1 1	STATE SEMBERS
	Nertz		*
1 3-24 10.04 X	B-1	111 X	
X BY	B-2		XXXX
× 00.50	3-8		XXXXX
X 0) . 81	B-10		XXXX
) io.25 X	11-B		XXXX
S × ++.6	B-13	X	XXXX
7 7.25 X	B-16		
ν φ. τ. τ. γ.	B-24	X	XXXX
× 30.6	B-26		
X \$3:8 4 01	B-27	X	XXXX
	SURENCE NATER		
3-24	T-1 (BULHING TANK)	111- X	XXXX
X X 85:6 + 27	1-2		N XXXXX
	11 C 1 - C 1		
HELINGUISHED BATSHAMINE)	Ē J	RELINOUISHED BY (SIGNATURE)	DATE / TIME RECEIVED BY (SIGNATURE)
HELINQUISHED BY (PRINT NAME)	RECEIVED BY (RAINT NAME)	RELINQUISHED BY (PRINT NAME)	RECEIVED BY (PRINT NAME)
RELINQUISHED BY (SIGNATURE)	RECEIVED BY (SIGNATURE)	METHOD OF SHIPMENT + 1900	TO BE SENT OUT _ 1 YES YES
RELINGUISHED BY (PRINT NAME)	RECEIVED BY (PRINT NAWE)		CUSTODY SEAL IN PLACE & INTACT J YES KINO
FOHM: COC REV 05/07	WHITE-LAB	CANARY - CLIENT	Rev. 11/07

Client: Pake	1ески	<u>st</u>		-			1.00	2 ~ 1
				Rep	ort N	lumbe	er: //();	3321
Project Name: Pancho VILIO. Web	b C	n . 1	TV	I .	e Re	ceive	ed: 3[.	25/11
Shipped via:]DHL		TL 🗂	Other	Da	te Du	ie: 📶	Hi
				Rush:] {	Specia	fy: Dist	2 🗆 1
Items to be checked upon	Recei	pt: [Yes, l	No, N/A]		•	-1-	
1. Custody Seals present?	Yes		No		NA	F	(0) 1.1	
2. Custody Seals intact?	Yes		No		NA		If NA-reason:	-
3. Air Bill included in folder, if received?	Yes		No		NA			
4. Is COC included with samples?	Yes	-	No		NA		If NA-reason:	
5. Is COC signed and dated by client?	Yes	C-	No		NA		If NA-reason;	
6. Sample temperature: Thermal preservation between >0°-6° C? (Samples that are delivered to the laboratory on the same day that they are			.,,		142 6		II INA-ICASON;	·
collected may not meet this criterion, but are acceptable if they arrive on ice.)	Yes		No		NA		Temp.	/ o _C
7. Samples received with iceice packs _ other cooling _	Yes		No		NA		If NA-reason:	
8. Is the COC filled out correctly, and completely?	Yes	_	No		NA		If NA-reason:	100000
9. Information on the COC matches the samples?	Yes		No		NA		If NA-reason:	
10. Samples received within holding time?	Yes		No		NA		If NA-reason;	
11. Samples properly labeled? 12. Samples submitted with chemical preservation?	Yes		No		NA		It'NA-reason:	/
(e.g. pH adjusted, or sodium thiosulfate added for microbiological tests)	Yes		No		NA		If NA-reason;	not need
13. Proper sample containers used?	Yes		No		NA		If NA-renson:	
14. All samples received intact, containers not damaged or leaking?	Yes		No		NA.		If NA-reason:	
15. VOA vials (requesting BTEX/VOC analysis) received with no air bubbles? Bubbles acceptable on VOA vials for TPH.	V					-	-	no voge
16. Sample volume sufficient for requested analysis?	Yes Yes		No		NA		If NA-reason:	viais
17. Subcontracted Samples: [if Yes, complete the next section]	Yes		No.		NA		If NA-reason:	
	1 63		No	22	NA		If NA-reason:	
Analyses Subcontracted Out:				No. of S	amp	les 🥫	-	
Samples sent to:					Ву:			
	Sample	es shi	pped v	/ia:				
TAT Requested:								
Tracking number [if any]: Comments:								
				45300				
							j	
Received By: M H		Dat	e:	3	1-	15	1,1	
Labeled By:			****		10	V	<u> </u>	
Logged into LIMS By:					1	-		
Logged into RF By:		Dat			1	<i>,</i>		
Dogge into tel by,		Dat	e:		1/			15.115
Q:\Forms\Sample Receipt Checklist Form Rev 012010.doc								

Revised 01/20/10 MGH